

BHVN LISTED NYSE

Forward-Looking Statement

This presentation includes forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, including statements about Biohaven Ltd. (the "Company") and our planned and ongoing trials for our BHV-2100, troriluzole, BHV-5500, BHV-1100, BHV-1200, taldefgrobep alfa, BHV-8000, BHV-7000 and BHV-7010 development programs, the timing of and the availability of data from our clinical trials, the timing and our decisions to proceed with our planned regulatory filings, the timing of and our ability to obtain regulatory approvals for our product candidates, the clinical potential utility of our product candidates, alone and as compared to other existing potential treatment options, and the potential advancement of our early phase programs including ARM[™], MATE[™], MODE[™], TRPM3, TDP-43, UC1MT, TYK2/JAK1, and Kv7. The use of certain words, including "continue", "plan", "will", "believe", "may", "expect", "anticipate" and similar expressions, is intended to identify forward-looking statements. Investors are cautioned that any forward-looking statements, including statements regarding the future development, timing and potential marketing approval and commercialization of our development candidates, are not guarantees of future performance or results and involve substantial risks and uncertainties. Actual results, developments and events may differ materially from those in the forward-looking statements as a result of various factors including: the expected timing, commencement and outcomes of Biohaven's planned and ongoing clinical trials; the timing of planned interactions and filings with the Food and Drug Administration; the timing and outcome of expected regulatory filings; complying with applicable U.S. regulatory requirements; the potential commercialization of Biohaven's product candidates; the potential for Biohaven's product candidates to be first in class or best in class therapies; and the effectiveness and safety of Biohaven's product candidates. You should, therefore, not rely on these forward-looking statements as representing our views as of any date subsequent to the date of this presentation. Additional important factors to be considered in connection with forward-looking statements are described in the Company's filings with the Securities and Exchange Commission, including within the sections titled "Risk Factors" and "Management's Discussion and Analysis of Financial Condition and Results of Operations". This presentation also contains market data and other information based on industry publications, reports by market research firms or published independent sources. Some market data and information is also based on the Company's good faith estimates, which are derived from management's knowledge of its industry and such independent sources referred to above.

WHY DAYS MATTER

NEUROPSYCHIATRIC ILLNESS LEADING CAUSE OF DISABILITY WORLDWIDE

\$1 TRILLION IN THE US

ANNUAL COSTS RELATED TO NEUROLOGICAL AND NEUROPSYCHIATRIC DISORDERS

HADOOO NILLOON PEOPLE IN THE US SUFFER FROM

NEUROLOGICAL DISEASES

1 IN 5 US ADULTS

LIVE WITH A NEUROPSYCHIATRIC ILLNESS

DEVASTATING BURDEN WILL SIGNIFICANTLY WORSEN AS

POPULATION OF 65+ YEARS OF AGE DOUBLES BY 2050

LEGACY OF DRUG DEVELOPMENT AND VALUE CREATION

CLINICAL EXCELLENCE

REGULATORY ACHIEVEMENT

COMMERCIAL DOMINANCE

HIGH VALUE PLATFORMS

INNOVATIVE PORTFOLIO

Pursuing novel paths of science to transform the treatment of neurological and neuropsychiatric diseases

In-house scientific expertise to enable a broad therapeutic portfolio addressing patient needs with intention

PROVEN BUSINESS FORMULA

Formula for continued growth built upon past success of experienced team and a resilient focus on creating value for patients and shareholders

DRIVING A ROBUST PIPELINE WITH Biohaven's Discovery Research

PreclinicalPrograms

6 Novel Small Molecule Approaches

Novel Large Molecule Approaches

Indications with High Unmet Medical Need

Comprehensive In-House Functional Expertise

		PRECLINICAL	PHASE 1	PHASE 2	PHASE 3	FILED
ION CHANNEL: Kv7 ACTIVATOR	Kv7	BHV-7000 Epilepsy, Bipc	olar Disorder			
		BHV-7010 Epilepsy, Mood Disorders				
ION CHANNEL: TRPM3 INHIBITOR	TRPM3	BHV-2100 Chronic Pain Disorders				
INFLAMMATORY: TYK2/JAK1 INHIBITOR	TYK2/JAK1	BHV-8000 Neuroinflamma	atory Disorders			
GLUTAMATE PLATFORM	Troriluzole	BHV-4157 Spinocerebella	ar Ataxia Type 3			
		BHV-4157 Obsessive-Co	mpulsive Disorder			
MYOSTATIN PLATFORM	Taldefgrobep Alfa	BHV-2000 Spinal Muscul	lar Atrophy			
		BHV-2000 Metabolic Disc	orders		1	
BISPECIFIC TARGETED CELL THERAPY	CD-38	BHV-1100 Multiple Myelo	ma		1	
DISCOVERY RESEARCH	lgG Degrader	BHV-1300 Immune-Mediated Diseases		1	1	
	lgA Degrader	IgA Nephropathy				
	Next-Gen ADC Platform	Oncology				biohaven

Bruce Car, Ph.D. Chief Scientific Officer

Shawn Rose, M.D., Ph.D.Gene Dubowchik, Ph.D.Executive ConsultantSVP, Molecular Technologies

Yale school of medicine

biohaven

biohaven

Bispecific Platform

Bruce Car, Ph.D. Chief Scientific Officer

David Spiegel M.D., Ph.D. Shawn Rose, M.D., Ph.D.

Professor Department of Chemistry Executive Consultant

biohaven

Yale school of medicine

Building a Franchise of Targeted Protein Degradation

DEGRADER PLATFORM **Overview**

A Pipeline of Therapies

Potential to support numerous clinical candidates across a wide range of indications by targeting pathogenic proteins and antibodies

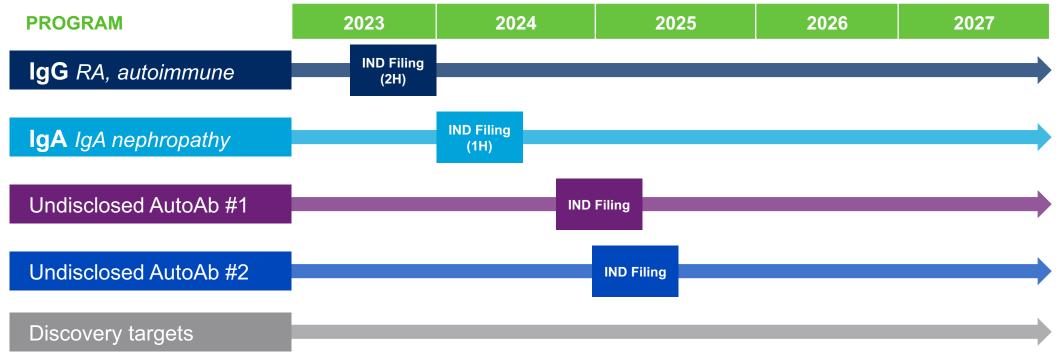
First-in-Class Targeted Degradation MOA

Extracellular protein degradation provides unique advantages, such as an accelerated path from discovery to clinic

BHV-1300

First-in-human MOA for efficient removal of pathogenic IgG with proven mechanism for autoimmune disorders

Galactose Deficient IgA1 Degradation

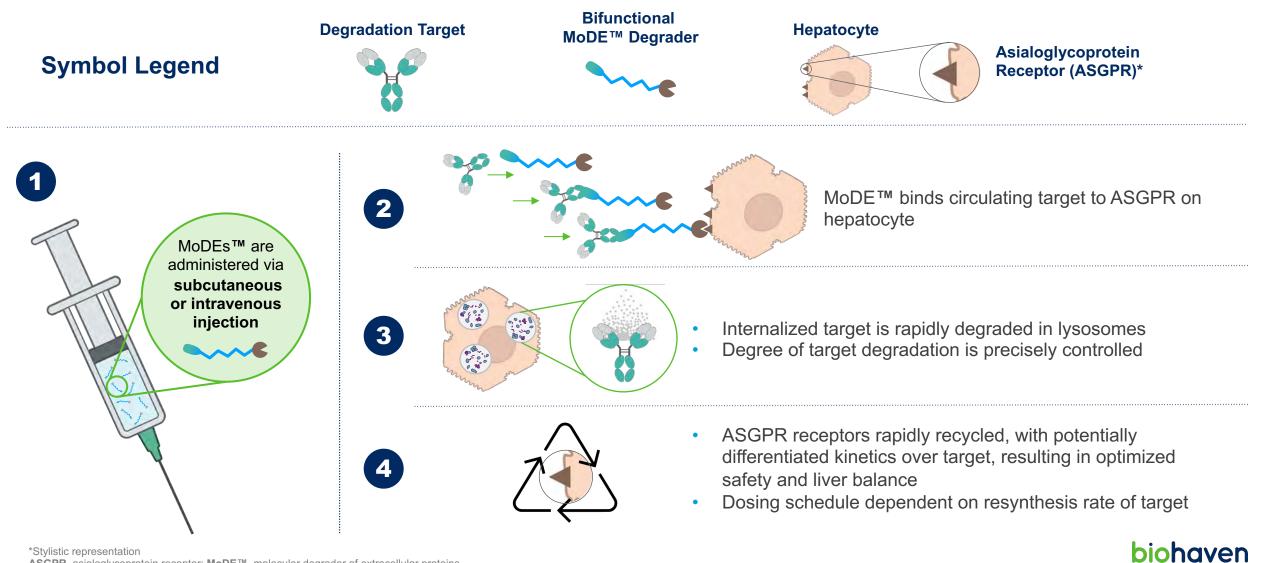

Novel antibody-based degrader for treatment of IgA nephropathy

Disease-Specific, Autoantibody-Targeted Degraders

Selective removal of autoantibodies implicated in multiple immune driven degenerative disorders

MoDE[™] Degraders: Multiple Asset Opportunities and Efficient Timelines

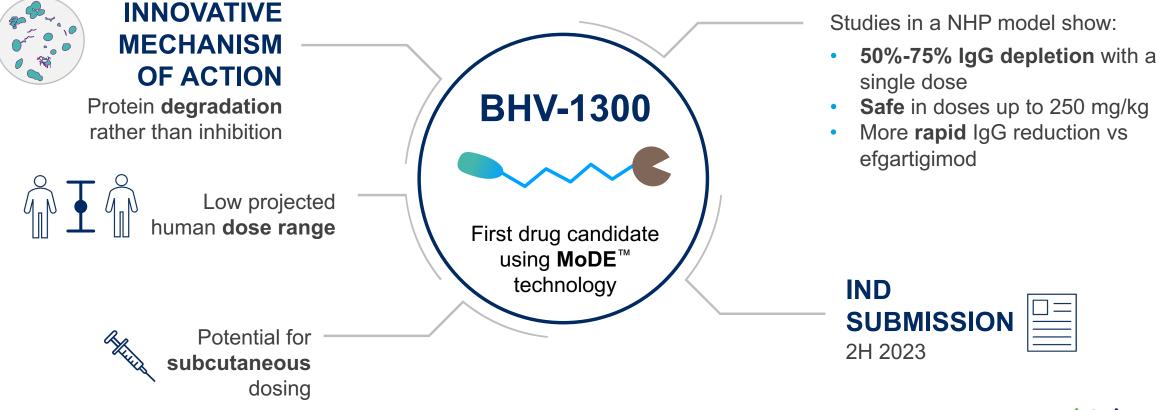
IgG and IgA antibodies are the first targets for Biohaven's powerful degradation platform



Key Value Inflection Points

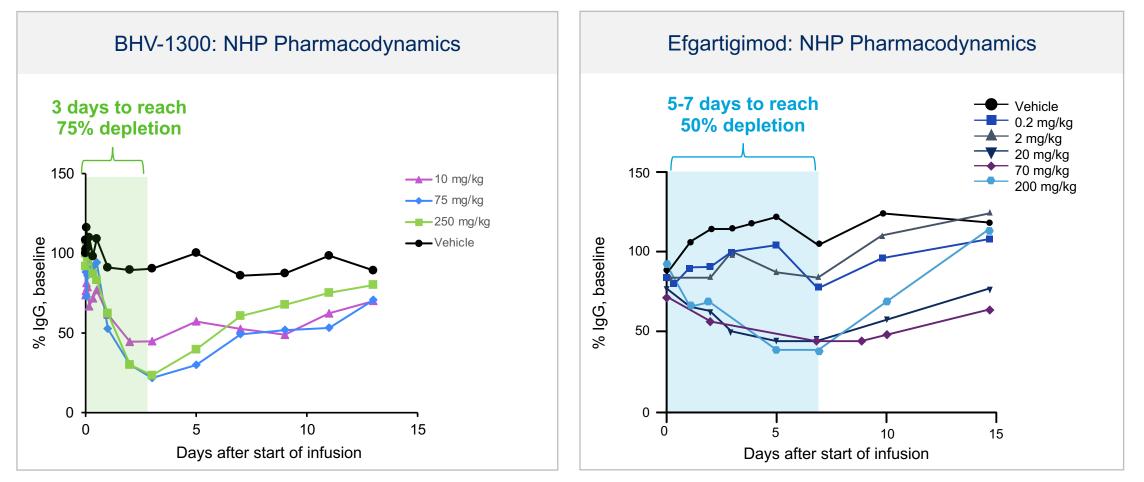
Realization of value inflection points will be project specific and aligned with cohesive portfolio strategy

AutoAb, autoantibody; Ig, immunoglobulin; IND, Investigational New Drug; MoDETM, molecular degrader of extracellular proteins; RA, rheumatoid arthritis


A First-in-Class Mechanism: Hepatic ASGPR Receptor Harnessed for Efficient and Safe Removal of Circulating Pathogenic Targets

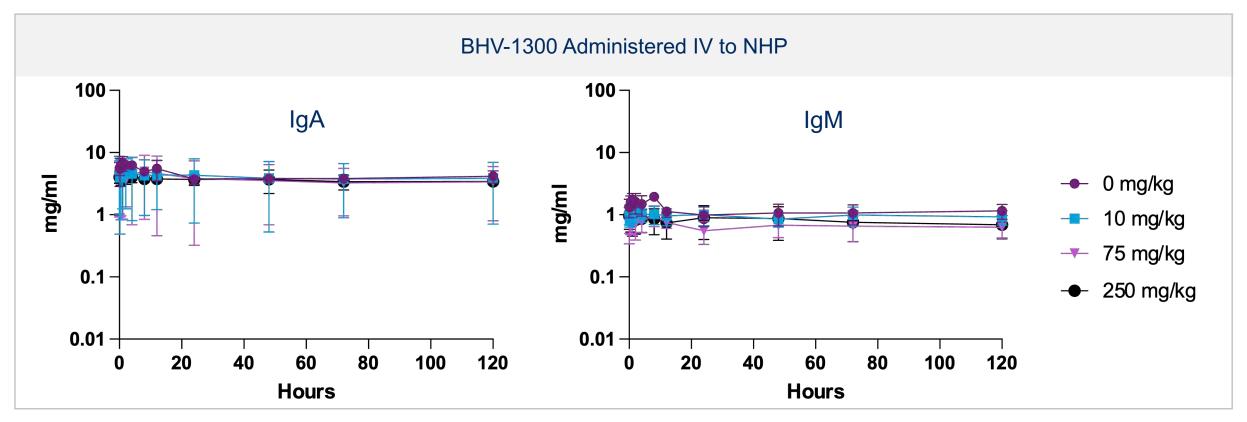
ASGPR, asialoglycoprotein receptor; MoDE™, molecular degrader of extracellular proteins

BHV-1300: A Potent Extracellular Pan-IgG Lowering Agent


Degrading and depleting pathogenic IgG in chronic and acute conditions may present multiple opportunities in neurological and non-neurological indications

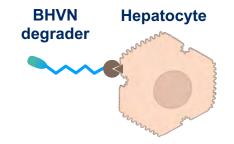
Ig, immunoglobulin; IND, Investigational New Drug; MoDE™, molecular degrader of extracellular proteins; NHP, non-human primate

BHV-1300: Shows Potential for Superiority Over SOC (Efgartigimod)


BHV-1300 demonstrated faster depletion of IgG in a non-human primate (NHP) compared to efgartigimod

The Journal of Clinical Investigation 2018:128(10):4372-4386. https://doi.org/10.1172/JC197911. **IgG**, immunoglobulin G; **NHP**, non-human primate; **SOC**, standard of care

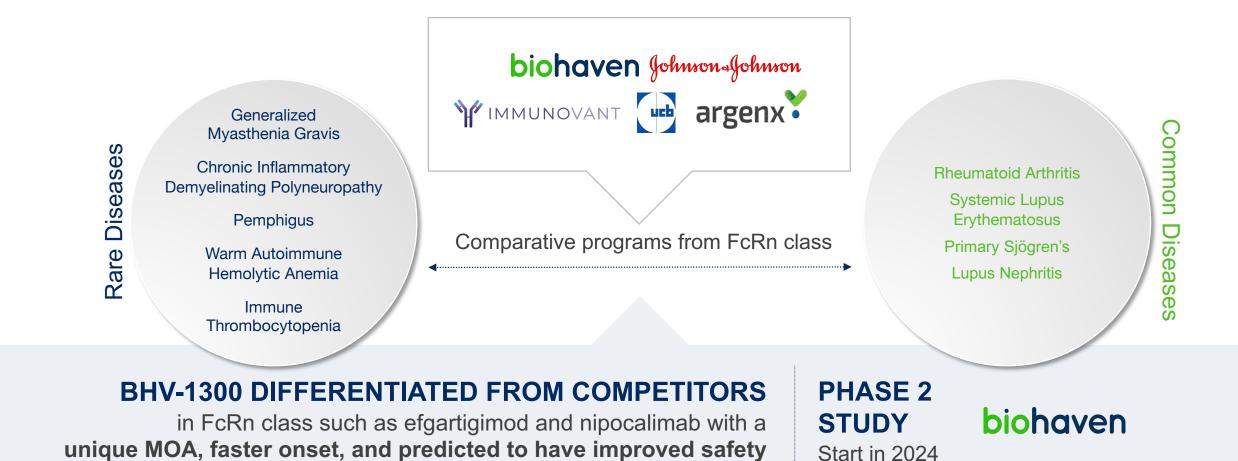
BHV-1300: IgG Specificity Leads to Improvements in Disease Targeting Without Unintended Consequences on Other Antibodies


IgA and IgM levels unaffected

 Preliminary BHVN data and literature are consistent with an absence of effects on serum albumin, LDL, HDL or triglycerides—limiting target-based toxicity as seen with FcRn

Ab, antibody; FcRn, neonatal Fc receptor; HDL, high-density lipoprotein; Ig, immunoglobulin; IV, intravenous; LDL, low density lipoprotein; NHP, non-human primate

BHV-1300: Specific and Rapid Pathogenic Target Removal

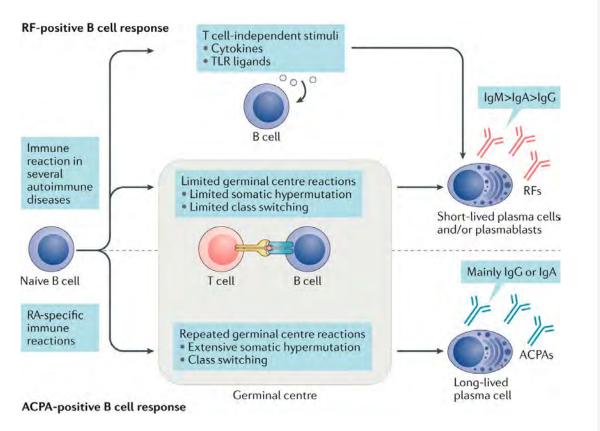

BHV-1300 can specifically remove target IgG from circulation **faster than FcRn inhibitory antibodies, antibody fragments, or immunosuppressants**

- Mechanism not expected to cause hypoalbuminemia or dyslipidemia
- Improved and optimizable potency for target removal
- Deeper target removal when required
- Improved pharmacodynamics with faster onset of action than FcRn inhibition
- Improved safety profile expected (fewer side effects, rapid drug elimination)

FcRn, neonatal Fc receptor; Ig, immunoglobulin; MoDE™, molecular degrader of extracellular proteins

BHV-1300: Has Potential to Add Significant Value Across Rare And Common Diseases With a Differentiated Profile from FcRn Class

Rheumatoid Arthritis Is a Heterogenous Autoimmune Disorder Marked by Autoantibodies of Various Classes


Autoantibodies can start to accumulate 10 years prior to clinical arthritis¹

THE ACR/EULAR DIAGNOSTIC **CRITERIA INCLUDE²:** Infections / changes Expansion, epitope Pathogenic Childhood infections / generation autoreactive B cells microbiome spreading etc. autoantibodies 3+ joints involved Acute phase biomarkers of Lifestyle and environmental factors (smoking, weight, diet, contraceptives) inflammation including elevated ESR and CRP Symptom duration Genetic susceptibility / hormonal factors(HLA, (fe)male hormones, menopause) Presence of RF and ACPA **Pre-symptomatic** Transition to Rheumatoid IgG+ ACPA in ~70% of RA At risk Symptomatic RA RA symptomatic RA Arthritis population with increasing evidence they may be ARTHRALGIA START AUTOIMMUNITY pathogenic in RA HEALTHY

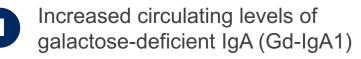

Without effective and early intervention, inflammation and joint destruction lead to loss of physical function and extremely poor QoL Additional health risks include elevated risk for cardiovascular disease, osteoporosis, and certain types of cancer (e.g., lymphoma)

1. Adapted from Van Delft and Huizinga, An overview of autoantibodies in rheumatoid arthritis; J Autoimmun 2020. 2. UpToDate accessed Jan 2023.

Exact Etiology of RA is Multifactorial With Environmental, Genetic, and T Cell Components, However Autoantibody Presence is a Main Feature

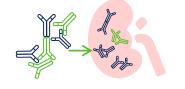
- Rheumatoid Factor (RF) antibodies are primarily IgM but form immune complexes with IgG
- Anti-citrillunated protein antibodies (ACPAs) including anticyclic citrullinated peptide-2 (anti-CCP2) are primarily IgG, but some IgA and IgM species exist
- All immune complexes can cause damage in joints, connective tissue in many organs, and bone
- Comorbidities from cardiovascular to malignancy need to be closely monitored
- In patients who are not in remission, status every 4-12 weeks needed to tightly control severity of flares and progression
- An IgG degrader could remove a major component of these immune complexes without lowering B cell counts

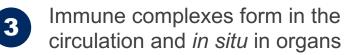
biohaven


Galactose Deficient (Gd) IgA Degradation

Gd-IgA1 Degradation to Treat IgA Nephropathy (IgAN)

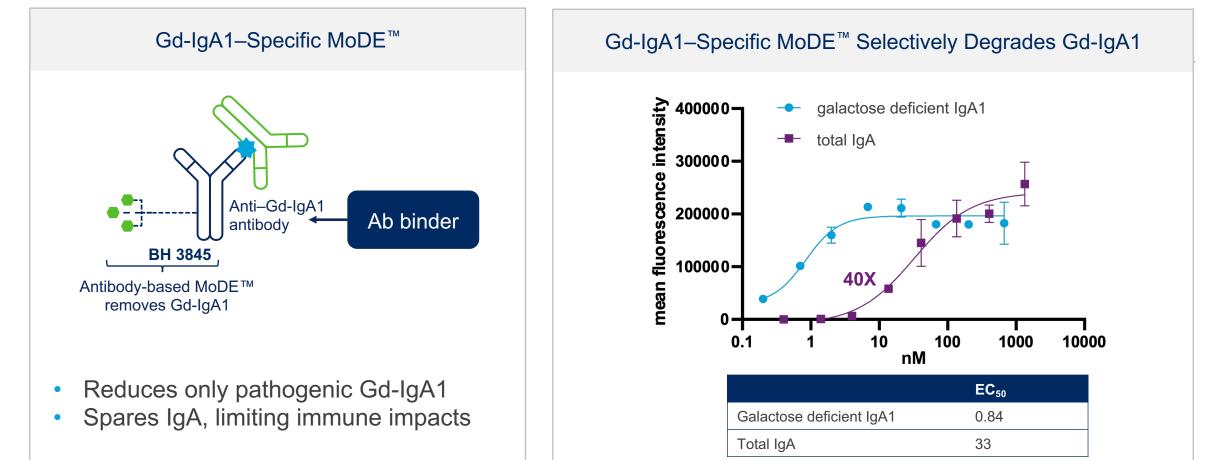
Pathophysiology of IgAN


2



Anti-IgA1 antibodies (IgA or IgG) are produced

Immune complexes in the mesangium of the kidney cause local immune activation and injury


Ab-based MoDE[™]

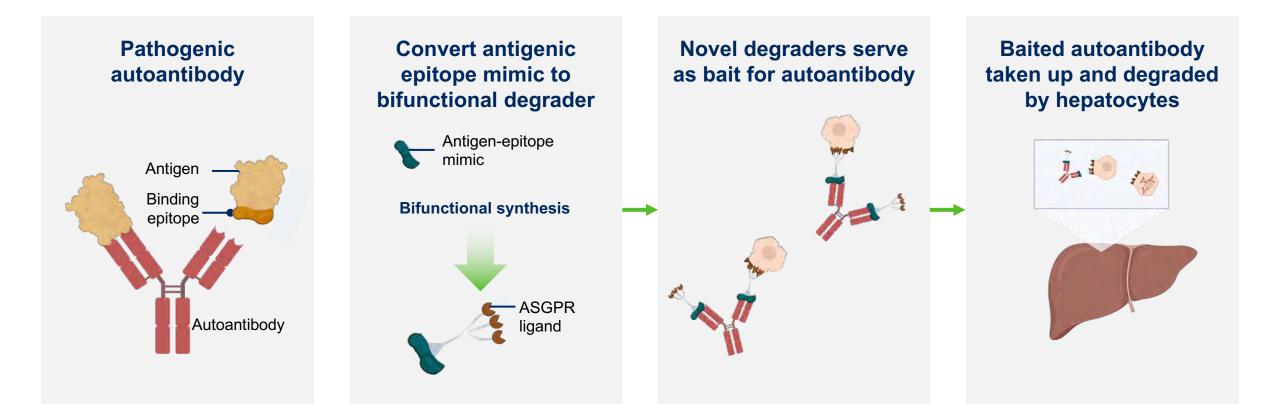
Biohaven is developing a rat-human Gd-IgA1–specific Ab-based degrader for the treatment of IgA nephropathy via selective removal of Gd-IgA1

- Expected low subcutaneous dose
- Competitive target opportunity profile
- Avoids host-defense issues of competitive approaches

Preclinical Studies Show the Gd-IgA1–Specific MoDE[™] Selectively Degrades the Gd-IgA1 Present in IgAN

At low concentrations, this Gd-IgA1–specific MoDE[™] selectively degrades Gd-IgA1 and spares total IgA, limiting the impact on the immune system

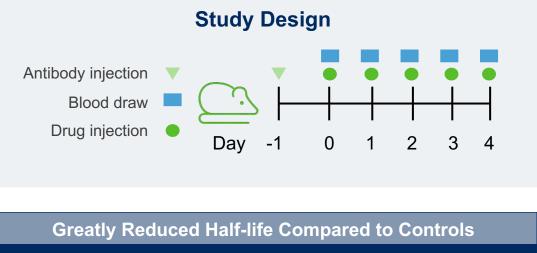
Ab, antibody; EC₅₀, half maximal effective concentration Gd, galactose-deficient; Ig, immunoglobulin; IgAN, IgA nephropathy; MoDETM, molecular degrader of extracellular proteins



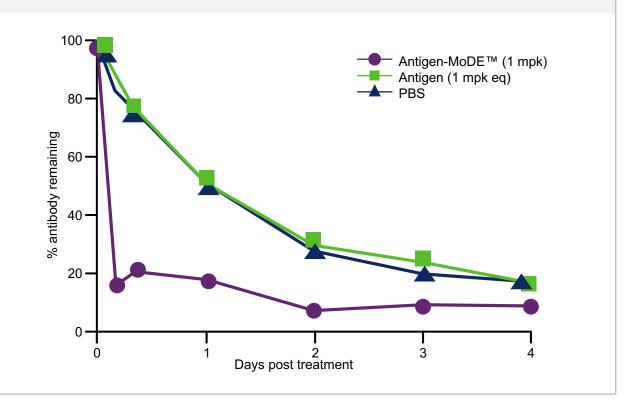
Professor Department of Chemistry

Yale school of medicine

Autoantibody Specific Degradation

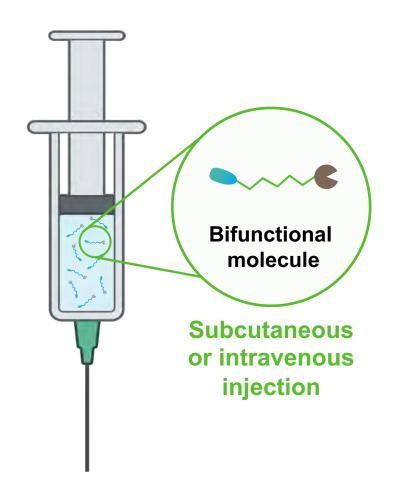

Selective Degradation of Autoantibodies as Next-Generation Degraders Preserving Immune Function

Selective removal of pathogenic and retention of nonpathogenic antibodies preserves host defense, providing a personalized and immune-sparing approach for immune-driven degenerative disorders


ASGPR, asialoglycoprotein receptor

Leveraging Known AutoAb Epitope–MoDE[™] Shows Rapid Reduction of Pathogenic AutoAb

Treatment	Half-life (h)		
Antigen-MoDE™	<2		
Antigen (Neg. Control)	27.5		
PBS	29.7		


Nearly Complete AutoAb Degradation in 4 Hours

Rapid, potent depletion with antibody half-life reduced by at least 15-fold

AutoAb, autoantibody; MoDE™, molecular degrader of extracellular proteins; PBS, phosphate-buffered saline

Summary: Biohaven MoDE[™] Extracellular Degraders Provide Optionality

- Numerous extracellular and circulating targets are involved in pathology and make excellent targets
- IND 2H 2023 for lead program BHV-1300 which has "pipeline in a product" potential
 - BHV-1300 has optimized chemistry with differentiated mechanism of action compared to standard of care, as well as to other novel agents in development
- Additional programs in development exploring targeting specific autoantibodies and Gd-IgA1
- Once a target is identified, approximately ~1 year to degrader candidate
 - Extracellular degrader as fast as 1.5-3 years to IND versus
 6-10 years for typical small molecule program

Select ligand for valid target, conjugate

Dev, discovery tox combined, pharmacology in parallel

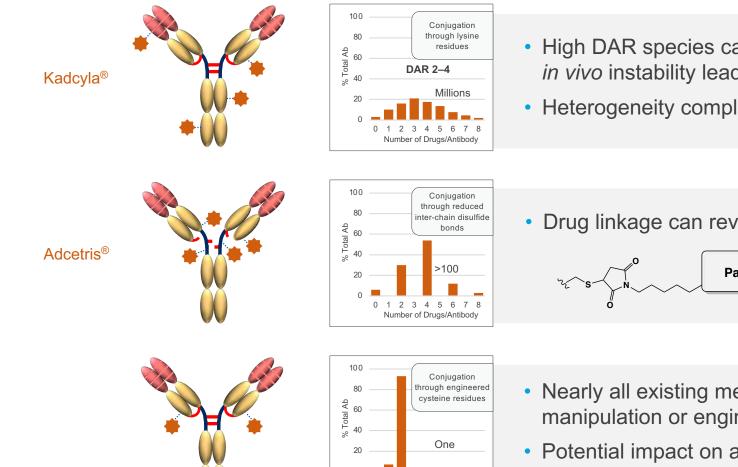
Gene Dubowchik, Ph.D. SVP, Molecular Technologies Bruce Car, Ph.D. Chief Scientific Officer

biohaven

biohaven

Next-Generation ADC Platform

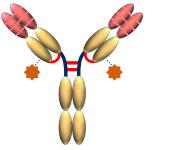
Biohaven's Next-Generation Site-Specific ADCs

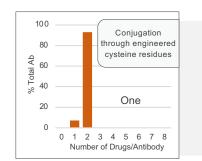

CONJUGATION CHEMISTRY SUPERIOR TO INDUSTRY STANDARD

maleimide and lipophilic click chemistry

Attachment to two specific lysines provides stable and consistent **drug antibody ratio** (DAR)

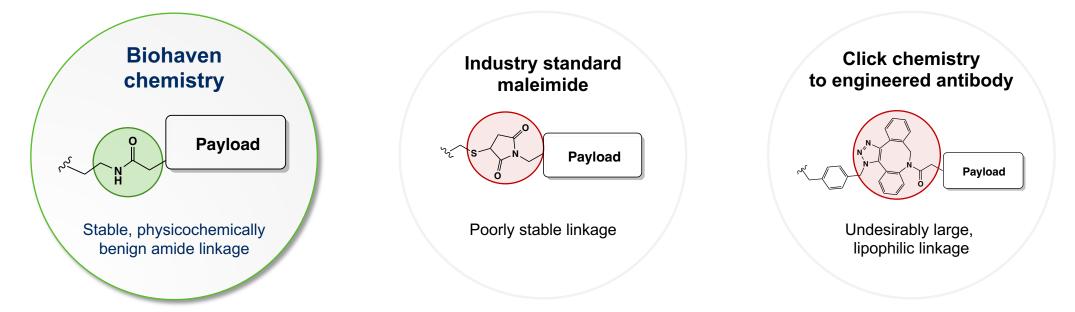
- ✓ ADAPTABLE Complements and improves multiple existing ADC payload-linker technologies
- ✓ **STABLE** Improved ADC plasma stability with controlled DAR potentially improves therapeutic index
- EFFECTIVE Improved efficacy in mouse tumor model also suggests potential for increased therapeutic index
- ✓ MULTIPURPOSE Conjugates IgG1, 2 & 4 and manufacturable: Single step conjugation with predictable good yields, low aggregation
- ✓ **NOVEL IP** filed globally in key markets


Challenges of Alternate ADC Protein Engineering and Chemistry



- High DAR species can cause CMC issues like aggregation, in vivo instability leading to toxicity
- Heterogeneity complicates CMC, may compromise efficacy

• Drug linkage can reverse over time, "leaking" free payload

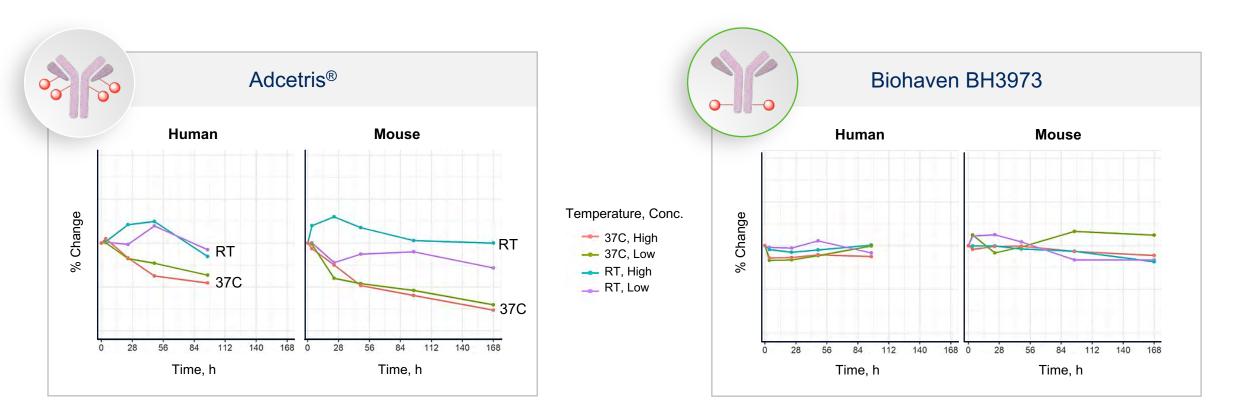


- Nearly all existing methods involve extensive antibody manipulation or engineering
- Potential impact on activity, clearance, immunogenicity, and COGs

DAR, drug antibody ratio

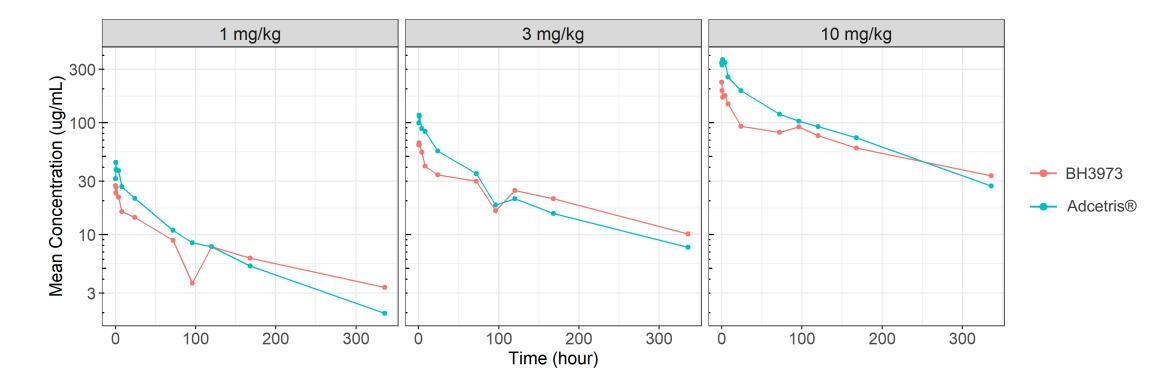
Potential "Best-in-class" Site-specific ADCs

IMPROVED LINKER STABILITY predicted to improve **therapeutic index**

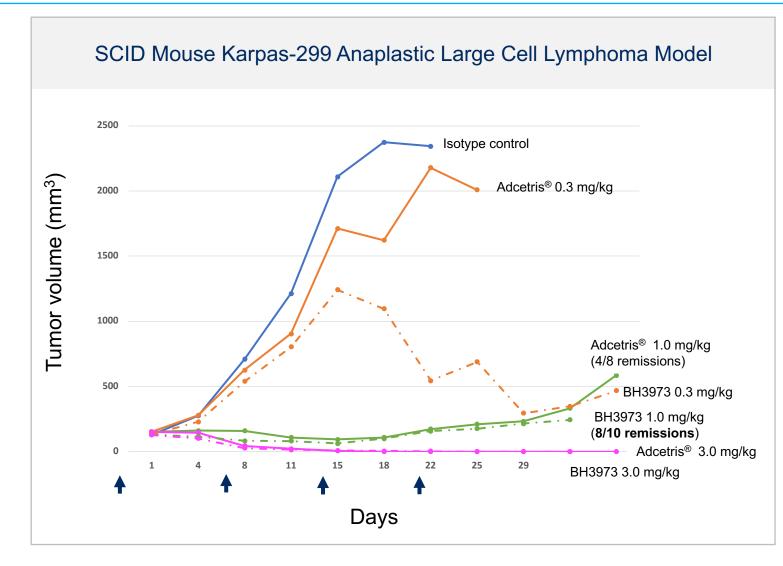

Improved safety: Reduced untargeted payload in systemic circulation driving toxicity
 Improved efficacy: Increased targeted payload reaches tumor, higher doses possible

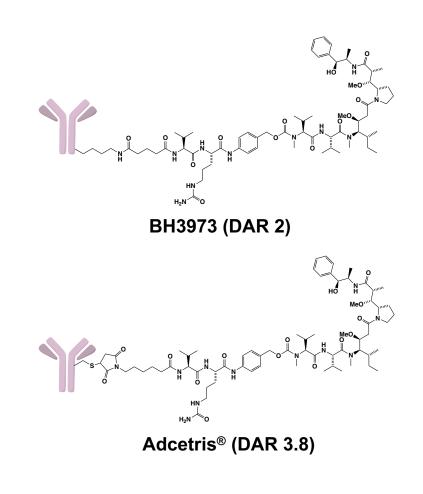
USES NATIVE ANTIBODY

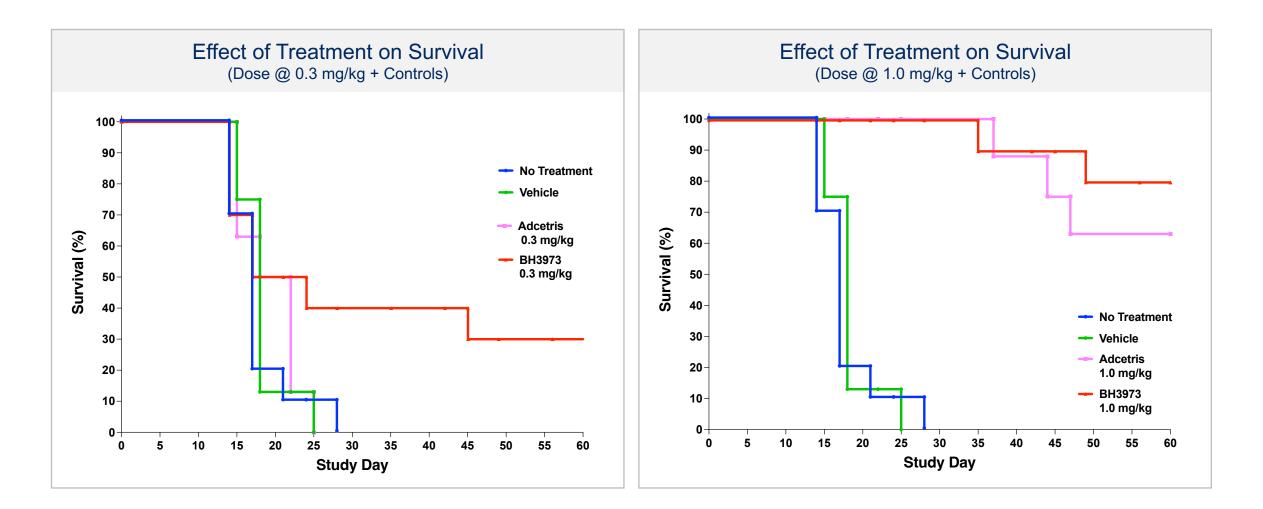
Likely improved CMC vs. current site-specific technologies


ADCs prepared based on Adcetris[®]

BH3973: Improved Plasma Stability Over Adcetris®


- ADC toxicity/tolerability directly relates to free payload
- Enhanced stability reduces free payload, and potentially allows for higher drug concentration at targeted tumor site for same tolerability


Adcetris[®] and BH3973 Demonstrate Comparable PK


- BH3973 half-life 7-8 days across all doses
- Adcetris[®] half-life 5-6 days across all doses

BH3973: Demonstrates Potential for Superior Efficacy to Adcetris®

BH3973: Improves Survival in Preclinical Model Compared to Adcetris[®] With Half the Payload

BIOHAVEN'S ADC TECHNOLOGY IS AN IDEAL ADD-ON TO IN-HOUSE DEVELOPED UNIQUE ANTIBODIES, BISPECIFICS

Even competitor molecules

 Existing, highly effective ADC formats such as Adcetris[®] and optimized warheads may potentially be enhanced with improved safety, efficacy, manufacturability and patent life

✓ Differentiated *in vivo* efficacy and safety results of BH3973 compared to Adcetris[®]

✓ Broad patent coverage

PANEL DISCUSSION Bispecific Platform

Tyler Van Buren *Equity Research Analyst*

TD Cowen

PANELISTS

Bruce Car, Ph.D. Chief Scientific Officer Gene Dubowchik, Ph.D. SVP, Molecular Technologies Shawn Rose, M.D., Ph.D. Executive Consultant David Spiegel, M.D., Ph.D. Professor, Department of Chemistry, Yale

Michael Bozik, M.D. Steven Dworetzky, Ph.D. SVP, Kv7

President, Ion Channel Research and Development John Krystal, M.D.

McNeil Professor and Chair Department of Psychiatry

Stephen Waxman, **M.D., Ph.D.**

Bridget Flaherty Professor Department of Neurology

Yale SCHOOL OF MEDICINE **Professor Thomas Voets**

Laboratory of Ion Channel Research VIB Center for Brain and Disease Research

biohaven

Strategy and Development

biohaven

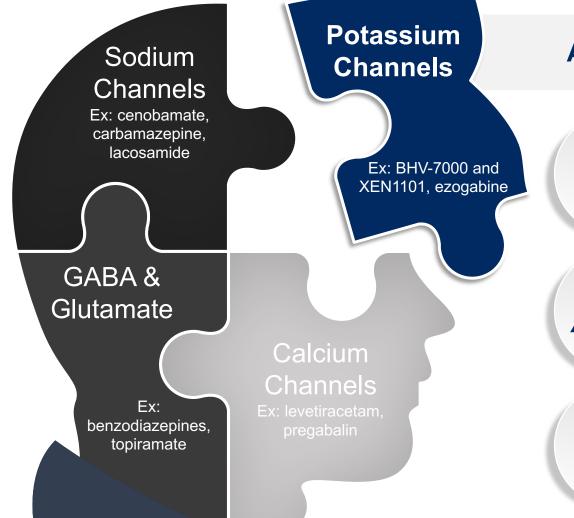
Yale SCHOOL OF MEDICINE

KU LEUVEN

Ion Channel Platform

Steven Dworetzky, Ph.D. SVP, Kv7 Strategy and Development

Michael Bozik, M.D.


President, Ion Channel Research and Development

biohaven

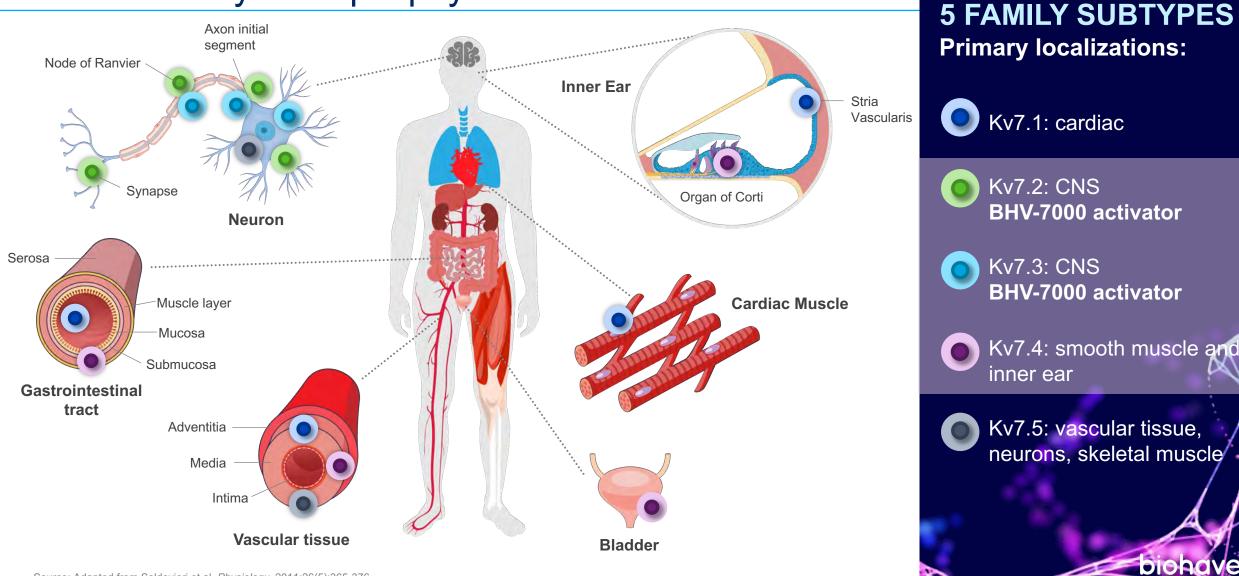
biohaven

Kv7 Platform

Kv7 Potassium Channels Are a Critical Regulator of Cell Excitability

A key missing piece in epilepsy treatment

Clinically validated mechanism of action for treating focal epilepsy

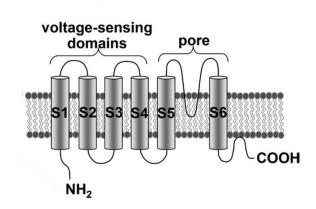


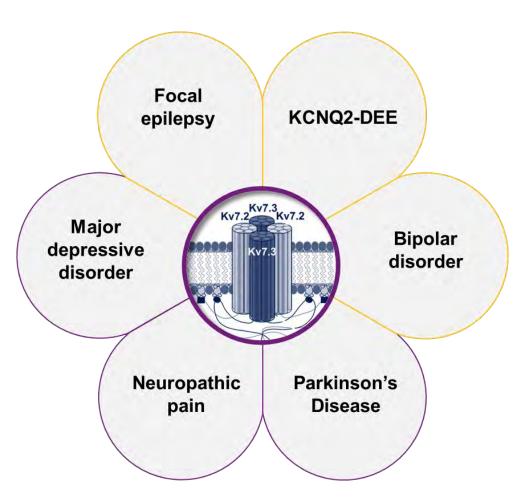
Strong rationale for development in adjacent indications

BHV-7000: First Kv7.2/7.3 modulator specifically designed to exclude GABA activation

Kv7 Platform Is Broadly Applicable to Hyperexcitability Disorders Beyond Epilepsy

Source: Adapted from Soldovieri et al. Physiology. 2011;26(5):365-376.


Kv7.2/7.3 Channels: The Molecular Substrates Underlying the M-current


american physiological society'

PHYSIOLOGY

Driving With No Brakes: Molecular Pathophysiology of Kv7 Potassium Channels

PHYSIOLOGY 26: 365-376, 2011; doi:10.1152/physiol.00009.2011

1980s Ezogabine synthesized and showed activity in seizure models

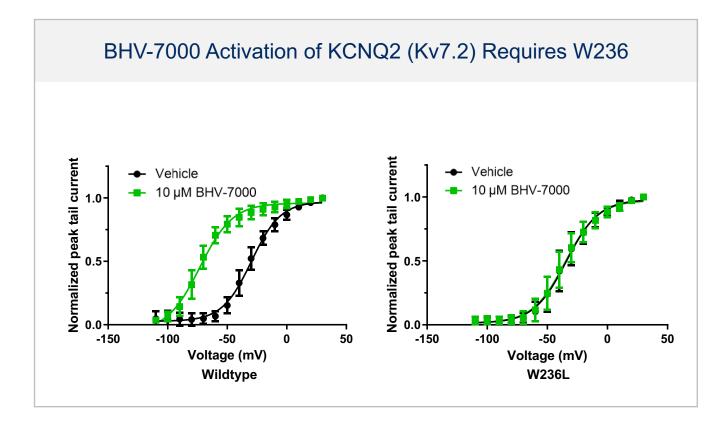
1990s KCNQ 2, 3, and 5 genes first cloned by Steven Dworetzky

1995 Ezogabine shown to activate KCNQ2 and KCNQ3 currents and demonstrated efficacy in seizure models broadly

2013 Knopp Biosciences initiates Kv7 discovery platform

2022 Biohaven acquires Channel Biosciences (Knopp), Kv7 activator platform, and BHV-7000

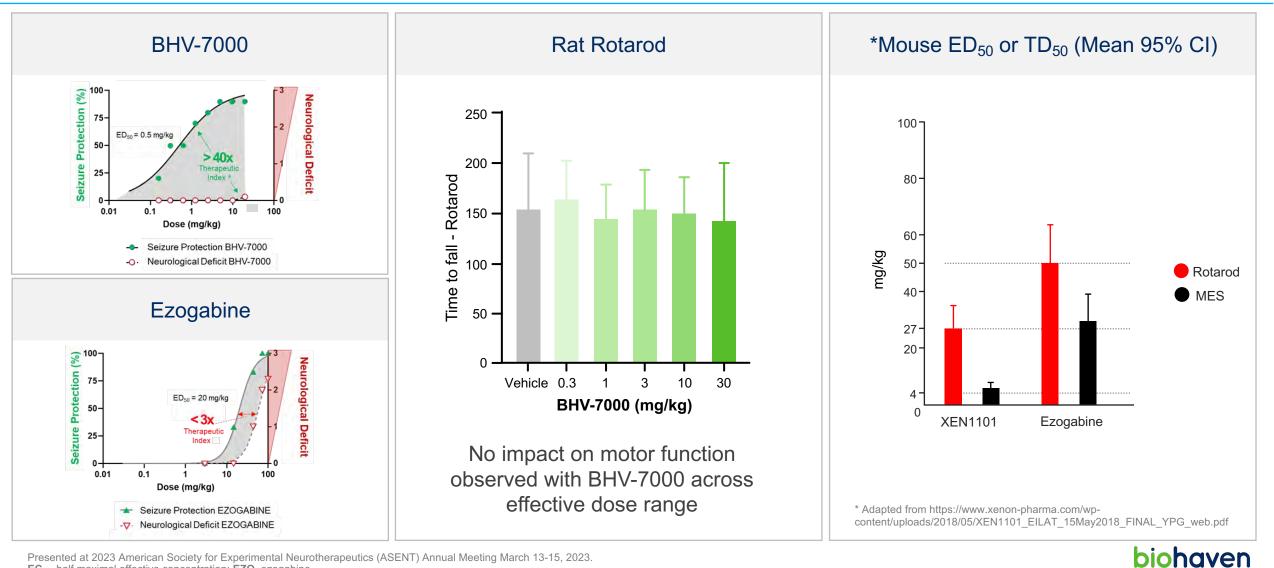
Significant Unmet Needs Remain for the 3.5 Million Patients Living with Epilepsy in the US


1/3 people are treatment refractory despite the availability of anti-seizure medications (ASMs), surgery, and diet modifications

After starting an ASM, **80% of patients will experience burdensome adverse events**, which can include:

- Somnolence
- Dizziness
- Cognitive dysfunction
- Mood disturbances

BHV-7000: Interacts at W236 Kv7 Site and Has Differential *In Vitro* and *In Vivo* Effects from Ezogabine and XEN1101



BHV-7000 More Potent *In Vivo* than Ezogabine and XEN1101

Compound	Brain <i>In vivo</i> EC₅₀ (μM)	<i>In vitro</i> EC₅₀ (μM)
BHV-7000	0.13	0.60
Ezogabine*	3.3	0.92
XEN1101*	0.42	0.042

*Presented virtually at AES2020, the American Epilepsy Society Annual Meeting, December 4-8, 2020.

BHV-7000: First Kv7.2/7.3 Activator in Clinical Development Designed Specifically to Exclude GABA_A Receptor Activation

Presented at 2023 American Society for Experimental Neurotherapeutics (ASENT) Annual Meeting March 13-15, 2023. EC₅₀, half maximal effective concentration; EZO, ezogabine

BHV-7000: First-in-Human SAD/MAD Phase 1 Study to Assess Safety, Tolerability and Pharmacokinetics

Objectives

PRIMARY

Evaluate safety and tolerability of single and multiple dose oral administration of BHV-7000 in healthy participants

SECONDARY

Evaluate the pharmacokinetics of single and multiple doses of BHV-7000

Evaluate the effect of a high-calorie/high-fat meal on the pharmacokinetics of BHV-7000

Population:

• Healthy adult males and females aged 18-55 years

Study Design:

- Single center, randomized, double-blind, placebo controlled, sequential SAD/MAD study
- Participants were randomized 3:1 (BHV-7000 to placebo) in each dose cohort
- Safety Review Committee assessment after each dose cohort prior to dose escalation

BHV-7000: Well Tolerated Across Phase 1 SAD/MAD Cohorts

SAFETY AND TOLERABILITY

No SAEs

No severe TEAEs, 1 moderate TEAE, remaining TEAEs mild by severity

DOSING

SAD: single doses up to 100 mg

MAD: multiple doses up to 40 mg daily x15 days

Exposures exceeded EC₅₀ in MES preclinical seizure model

MedDRA System Organ Class	Placebo (N=15) n (%)	BHV-7000 (N=46) n (%)
Nervous system disorders	1 (6.7)	7 (15.2)
Gastrointestinal disorders	1 (6.7)	6 (13.0)
Musculoskeletal disorders	0	5 (10.9)
Infections	0	2 (4.3)
Investigations	1 (6.7)	2 (4.3)
Respiratory disorders	0	2 (4.3)
Skin disorders	0	2 (4.3)
Eye disorders	0	1 (2.2)
General disorders	0	1 (2.2)
Procedural complications	1 (6.7)	1 (2.2)
Psychiatric disorders	0	1 (2.2)
Renal disorders	1 (6.7)	1 (2.2)

BHV-7000: Phase 1 SAD/MAD CNS TEAEs by Dose and Cohort

Single Ascending Dose

CNS AEs ^a	Placebo N=10	4 mg N=6	10 mg N=6	25 mg (Fasted) N=6	25 mg (Fed) N=6	50 mg N=6	100 mg N=5	BHV-7000 Overall N=29
Headache	0	0	1 (16.7)	1 (16.7)	0	1 (16.7)	0	3 (10.3)
Dizziness	0	0	1 (16.7)	0	0	0	0	1 (3.4)
Myoclonus	0	0	0	1 (16.7)	0	0	0	1 (3.4)

aMedDRA® Preferred Term within the System Organ Class of "Nervous System Disorders"

Multiple Ascending Dose

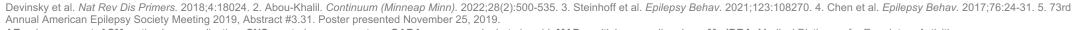
CNS AEs ^a	Placebo N=5	10 mg N=5	25 mg N=6	40 mg N=6	BHV-7000 Overall N=17
Headache	1 (20.0)	0	0	3 (50.0)	3 (17.6)

aMedDRA® Preferred Term within the System Organ Class of "Nervous System Disorders"

BHV-7000: Not Associated with CNS AEs Typical of Other ASMs

Challenges with Existing ASMs

80% of patients will experience an AE after starting an ASM¹


GABA_A pathway activated by other ASMs is associated with AEs such as somnolence and dizziness²

Several ASMs cause behavioral (irritability, anger, aggression) or psychiatric (depressive mood, anxiety, psychosis) AEs^{3,4}

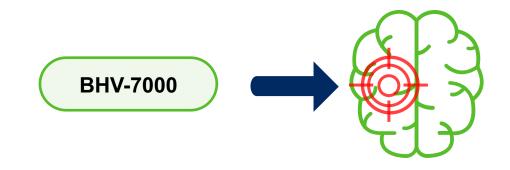
Pooled CNS AEs ^{a,5}	BHV-7000 MAD Pooled N=17	Xen1101 MAD Pooled N=18
Somnolence	0%	39%
Headache	18%	39%
Balance disorder	0%	17%
Dizziness	0%	17%
Memory impairment	0%	28%
Sensory disturbance	0%	11%
Speech disorder	0%	33%

^aMedDRA[®] Preferred Term within the System Organ Class of "Nervous System Disorders" Data presented is not the result of any head-to-head clinical trials and does not mean or suggest that BHV-7000 is clinically more safe and effective.⁵

AE, adverse event; ASM, anti-seizure medication; CNS, central nervous system; GABA, gamma-aminobutyric acid; MAD, multiple ascending dose; MedDRA, Medical Dictionary for Regulatory Activities

BHV-7000: Summary and Clinical Program Status

- Potent, selective activator of Kv7.2/Kv7.3 potassium channels, a clinically validated target to regulate the hyperexcitable state in epilepsy
- Structurally and pharmacologically distinct from other potassium channel activators
- Minimal GABA_A receptor activation, potentially providing better tolerability
- Potent in the MES epilepsy model without adverse effects on neurobehavior
- Well-tolerated in Phase 1 SAD/MAD study without CNS adverse effects typical of anti-seizure medications

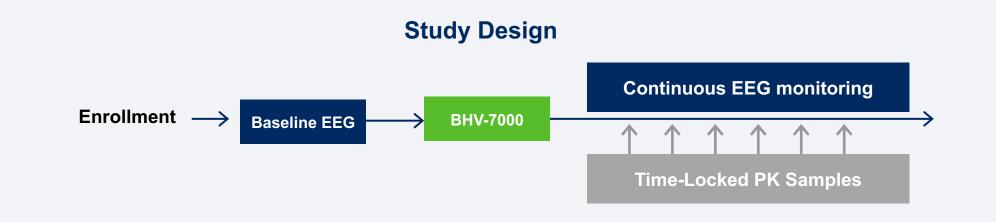

There is a missing piece in epilepsy treatment for better-tolerated, efficacious anti-seizure medications

Phase 1 SAD/MAD
Phase 1 EEG
Phase 2/3 Focal Epilepsy

CNS, central nervous system; EEG, electroencephalography; GABA, gamma-aminobutyric acid; MAD, multiple ascending dose; MES, maximal electroshock seizure; SAD, single ascending dose

Biohaven | R&D Day

BHV-7000: Phase 1 Healthy Volunteer EEG Study to Demonstrate Pharmacodynamic Activity



Study Objective:

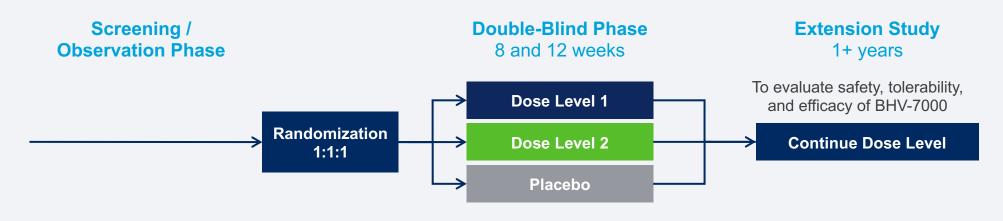
 Demonstrate BHV-7000 target engagement in the cerebral cortex and refine dose selection for Phase 3

Study Measures:

- Continuous EEG monitoring & PK sampling
- Evaluation of changes in EEG spectral power post dose

BHV-7000: Phase 3 Trials in Focal Epilepsy

Two multicenter, international, placebo-controlled, double-blind studies to evaluate the efficacy of BHV-7000 in adolescents and adults with refractory focal epilepsy


Key Inclusion Criteria:

- 12-75 years old
- Refractory focal epilepsy

Primary Endpoint: median percent change
(US), ≥50% responder rate (EU)
Secondary Endpoint: QOLIE-31, Seizure
Freedom

Study Design

QOLIE-31, Quality of Life in Epilepsy Inventory; Planned study design for Phase 3 trials

Kv7 PLATFORM Summary

Proprietary Chemical Library of Novel Kv7 Activators

In-house synthesis with differentiated pharmacological profiles with potential for multiple indications

Kv7.2/7.3 Activation

Clinically validated mechanism of action in epilepsy

BHV-7000: Potential Best-in-Class with Differentiation

Preclinical data suggests wide therapeutic index in the clinic by dialing out GABA risk (*somnolence, sedation, dizziness*)

BHV-7000 Series COM Patent Protection covered until 2039

Status Update BHV-7000 Phase 1 SAD/MAD study completed BHV-7000 Phase 1 EEG study initiation 1H 2023

Yale school of medicine

BHV-7000 in Bipolar Disorder

Bipolar Disorder Affects 11 Million Adults in the US and Requires Lifelong Treatment

While bipolar disorder is characterized by mania, most of the time spent sick is with **depression**, yet there are **few effective options** for bipolar depression and maintenance treatment¹⁻⁴

Approximately 50% of patients with bipolar disorder are medication nonadherent, with discontinuations most commonly due to poor tolerability^{4,5}

In the last 20 years, no new mood stabilizer has been approved for the treatment

of bipolar disorder, with the only new agents being antipsychotics⁶

- Lamotrigine is the last novel mood stabilizer approved in bipolar disorder; utility is primarily in maintenance with limited efficacy in acute depressive episodes
- Serious AEs observed with use of current mood stabilizers include thyroid and renal function issues, liver toxicity, thrombocytopenia, rash, and Stevens-Johnson syndrome^{3,9}
- Atypical antipsychotics carry risks of metabolic dysfunction, weight gain, and cognitive slowing
- Adherence issues related to AEs lead to ineffective treatment and risk of relapse^{5,7,8}

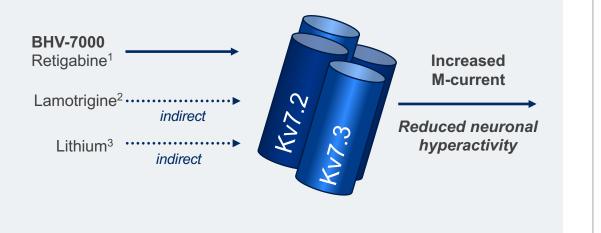
1. Tondo et al *Curr Neuropharmacol.* 2017;15(3):353-358. 2. Miller et al. *J Affect Disord.* 2014;169(Suppl 1):S3-11. 3. Carvalho et al. *N Engl J Med.* 2020;383(1):58-66. 4. McIntyre, Calabrese. *Curr Med Res Opin.* 2019;35(11):1993-2005. 5. Jawad et al. *Ther Adv Psychopharmacol.* 2018;8(12):349-363. 6. Rhee et al. *Am J Psychiatry.* 2020;177(8):706-715. 7. Fung et al. *J Affect Disord.* 2019;257:17-22. 8. Marzani, Neff. *Am Fam Physician.* 2021;103(4):227-239. 9. Bobo. *Mayo Clin Proc.* 2017;92(10):1532-1551. **AE**, adverse event; **BD**, bipolar disorder

Compelling Evidence for Kv7 Activation in Bipolar Disorder Treatment

Overlapping molecular, cellular mechanism in bipolar disorder

- ANK-3 is a highly implicated gene in bipolar disorder; ANK-3 codes for a protein that anchors Kv7 channels to the cell membrane¹
- Kv7.2/7.3 channels are among the most dysregulated proteins in bipolar brain tissue²
- Bipolar patients exhibit several relevant epigenetic changes linked to Kv7³

Preclinical evidence for manic and depressive poles


- ✓ Mice who upregulate Kv7 are resilient to stress-induced depressive effects⁴
- Kv7 activators reverse and prevent pathologic hyperactivity in depression and mania models^{5,6}
- Kv7 mutations cause transdiagnostic mood disturbances including hyperactivity, insomnia, anxiety, and cognitive dysfunction¹

1. Judy et al. *Front Genet.* 2013;4:87. 2. Kristensen et al. *J Neurochem.* 2012;3:373-382. 3. Kaminsky et al. *Bipolar Disord.* 2015;2:150-159. 4. Friedman et al. *Nat Commun.* 2016;24(7):11671. 5. Dencker et al. *Behav Brain Res.* 2010;1:78-83. 6. Redrobe et al. *Behav Brain Res.* 2009;198(2):481-485. **ANK-3**, ankyrin 3

BHV-7000: Demonstrates Potential for Clinical Translation of Kv7 Activation in Bipolar Disorder

BHV-7000 shares mechanistic overlap with cornerstone bipolar treatments

Robust Preliminary Acute Efficacy in MDD Likely To Translate to Bipolar Disorder Retigabine vs placebo; MDD measured via MADRS and fMRI^{4,5} 0 Change in VS activation to reward anticipation (outcome > baseline) 0.8 Change in MADRS score 0.6 -5 0.4 -10 0.2 0.0 -15 -0.2 -20 Ezogabine Placebo 0 5 Weeks ~7 decrease vs placebo with fMRI study: Retigabine effects

retigabine in depression improvement

fMRI study: Retigabine effects mediated by the limbic system

Medications such as antipsychotics and lithium have established efficacy in unipolar and bipolar depression

biohaven

fMRI, functional magnetic resonance imaging; GSK3B, Glycogen Synthase Kinase 3 Beta; MADRS, Montgomery-Åsberg Depression Rating Scale; MDD, major depressive disorder

BHV-7000: Potential to Overcome Challenges With Existing Therapies

Potential for best-in-category tolerability and safety

- Low burden to patients and providers, enabling safer, easier long-term treatment
- No expected long-term metabolic side effects, no "switching" risk, no titration, and no drug monitoring

	Lithium	Valproate	SSRI	Antipsychotics	Lamotrigine
Metabolic AEs	000	000	000		000
Hepatic AEs	000		000	000	000
Renal AEs		000	000	000	000
Rash / SJS	000	000	000	000	
Sexual SE	000	000		000	000
Sedation / Cognitive AE			000		000
Drug monitoring			000	000	000
Switching risk	000	000			000
Titration			000	000	

SJS, Stevens-Johnson Syndrome

BHV-7000: Potentially Addresses Key Unmet Needs in Bipolar Disorder by Reducing Stress-Related Hyperactivity While Enhancing Resilience

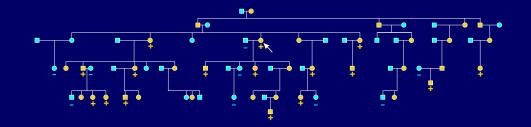
Current therapies for bipolar depression show minimal efficacy and widely prescribed antidepressants carry "switching" risk

 The novel mechanism of BHV-7000 has potential for robust antidepressant effects without "switching" risk

Patients change or discontinue medication after ~2 months; >50% of patients discontinue at 6 months due to intolerance¹

 BHV-7000 offers favorable safety and tolerability over current mood stabilizers and antipsychotics

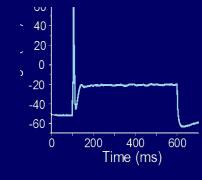
Current 1st line mood stabilizers require titration or frequent laboratory monitoring, burdening both prescribers and patients³

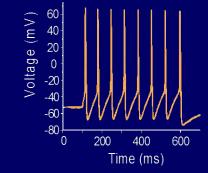

 BHV-7000: no titration or safety laboratory monitoring anticipated, an advantage over current mood stabilizers

1. Jawad et al. Ther Adv Psychopharmacol. 2018;8(12):349-363. 2. Vieta et al. Nat Rev Dis Primers. 2018;4:18008. 3. Yatham et al. Bipolar Disord. 2018;20(2):97-170.

Yale school of medicine

Kv7.2/3 and Modulation of Pain

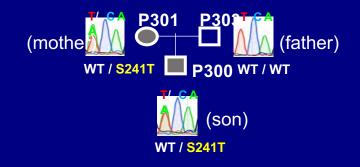



Our worldwide search identifies IEM (Nav1.7 GOF) as a human genetic model of Neuropathic Pain

•Rare genetic disorders are "experiments of nature" that can:

- •Define molecular mechanisms in humans
- •Identify therapeutic targets that are relevant to common disorders

EXAMPLE: the Statin medications



Can we pinpoint pain resilience genes?

Mother / son both with IEM due to same Nav1.7 GOF mutation What is protecting the mother from pain?

Malgorzata Mis

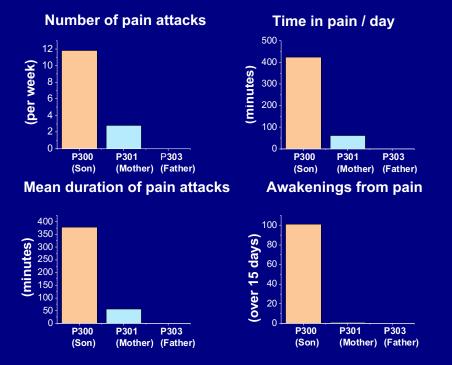
Yang Yang

Brian Tanaka

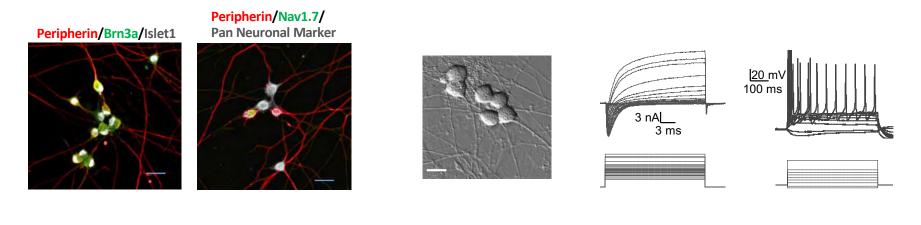
Carolina Gomis-Perez

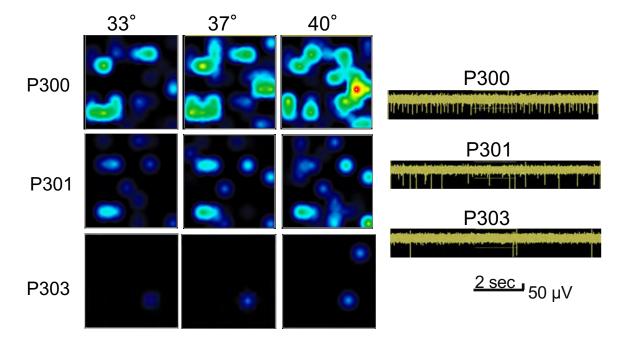
Shujun Liu

Fadia Dib-Hajj

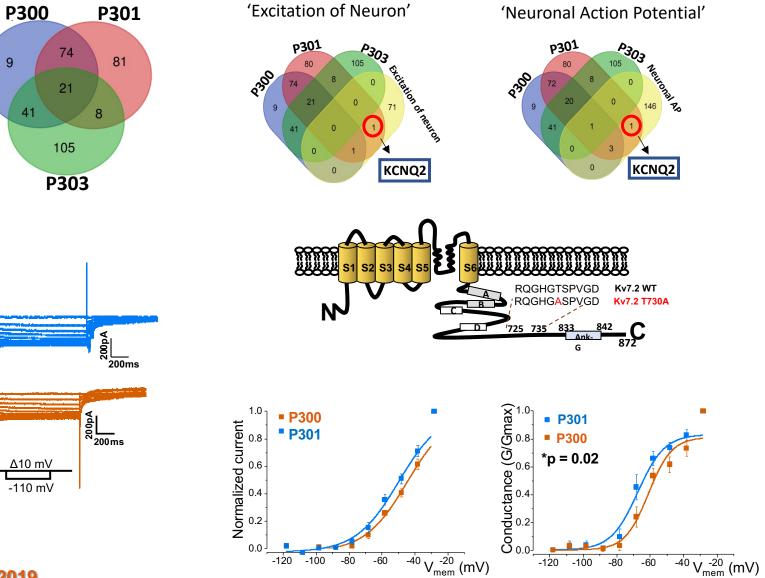

Talia Adi

Rolando Garcia-Milian


Betsy Schulman

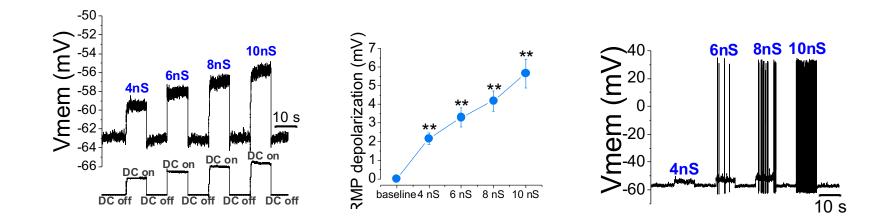

Sulayman Dib-Hajj

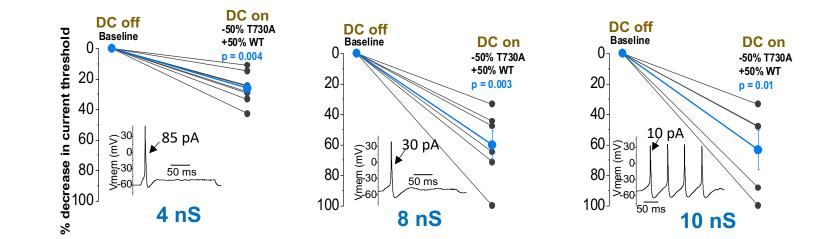
Stephen Waxman


Pain-in-a-Dish: Differences in excitability between iPSC-SNs from different subjects with the same S241T mutation parallel different pain profiles

Mis et al, 2019

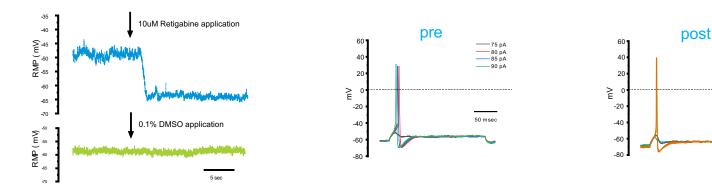
Whole exome sequencing reveals a variant in KCNQ2 gene as a potential modulator of neuronal excitability in iPSC-SNs from Pain-Resilient subject

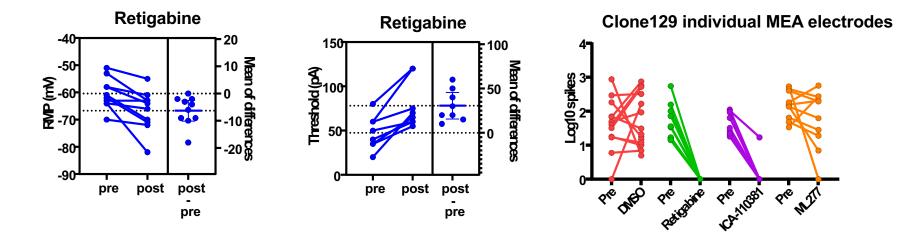

Mis et al, 2019


P301

P300

- 20 mV


Dynamic-clamp: Kv7.2-T730A I_M reduces the excitability of iPSC-SNs, thereby contributing to Pain Resilience



Mis et al, 2019

Kv7 activator hyperpolarizes RMP and reduces excitability in human IEM iPSC-SNs

Estacion et al, 2023

—— 110 pA —— 115pA

—— 120 pA

50 m sec

Professor Thomas Voets

Laboratory of Ion Channel Research VIB Center for Brain and Disease Research

KU LEUVEN

BHV-2100: TRPM3 Antagonism

TRPM3 (BHV-2100) Overview

Novel Peripheral Target for Neuropathic Pain

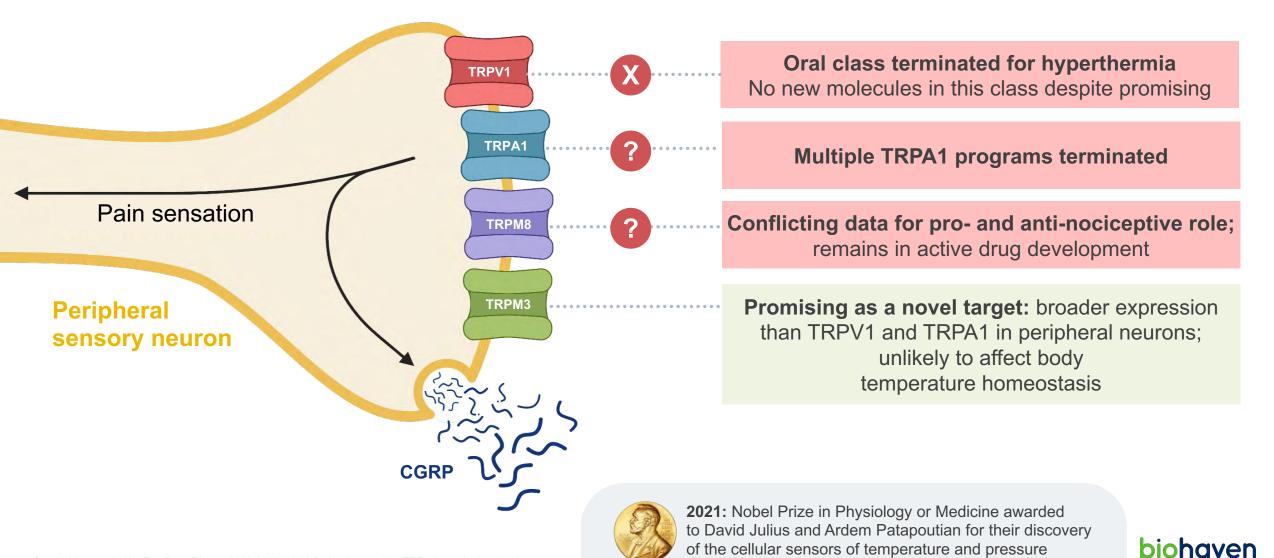
Differentiated from existing programs targeting TRPV1 and TRPA1

First-in-Class & Best-in-Class Potential

BHV-2100 is the only TRPM3 antagonist in clinical development

Pain Reversal with Reduced Liabilities Compared to SOC

BHV-2100 preclinical data shows reversal of pain in various models, without sedative effects


Selective, Potent, and Peripherally-Restricted

- Selectivity within TRP family avoids potential class liabilities such as hyperthermia and provides a non-opioid option for the >50% of neuropathic pain patients who still have breakthrough pain
- High potency, selectivity, optimal ADME and toxicology characteristics

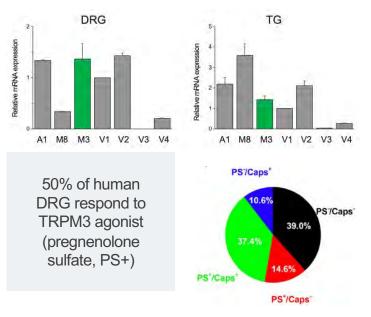
Status Update

IND submission planned for 2H 2023

TRPM3: A Novel Peripheral Target for Neuropathic Pain

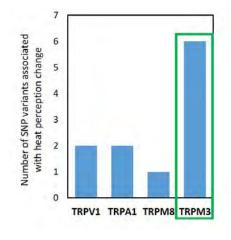
See Koivisto et al. Nat Rev Drug Discov. 2022;21(1):41-59 for background on TRP channel drug development

Growing Evidence Implicates TRPM3 in Nociception and Pain


Majority of TRPM3 data emerged in past few years

Knockouts Are Resistant To Injury-Induced Pain States

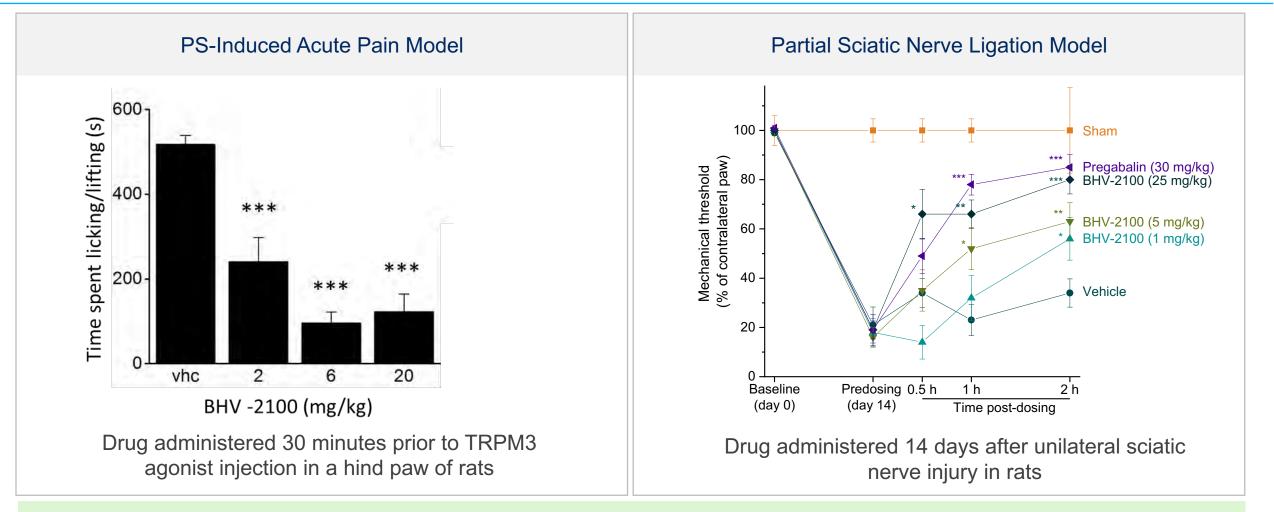
- TRPM3 knockout mice do not develop mechanical or thermal hypersensitivity in:
 - Nerve injury assay
 - Chemotherapy-induced
 neuropathic pain assay
 - Osteoarthritis model
 - Inflammatory pain assay (CFA)
- TRPM3 knockout mice have normal body temperature and minor changes in heat sensitivity^{1,2}


Highly Expressed in DRG/TG

 TRPM3 is highly expressed in human dorsal root ganglion and trigeminal ganglia^{1,3,4}

Human Genetic Validation

- Gain-of-function mutations associated with altered pain and heat sensation^{5,6,3}
- Several SNPs associated with increased pain after UVB³

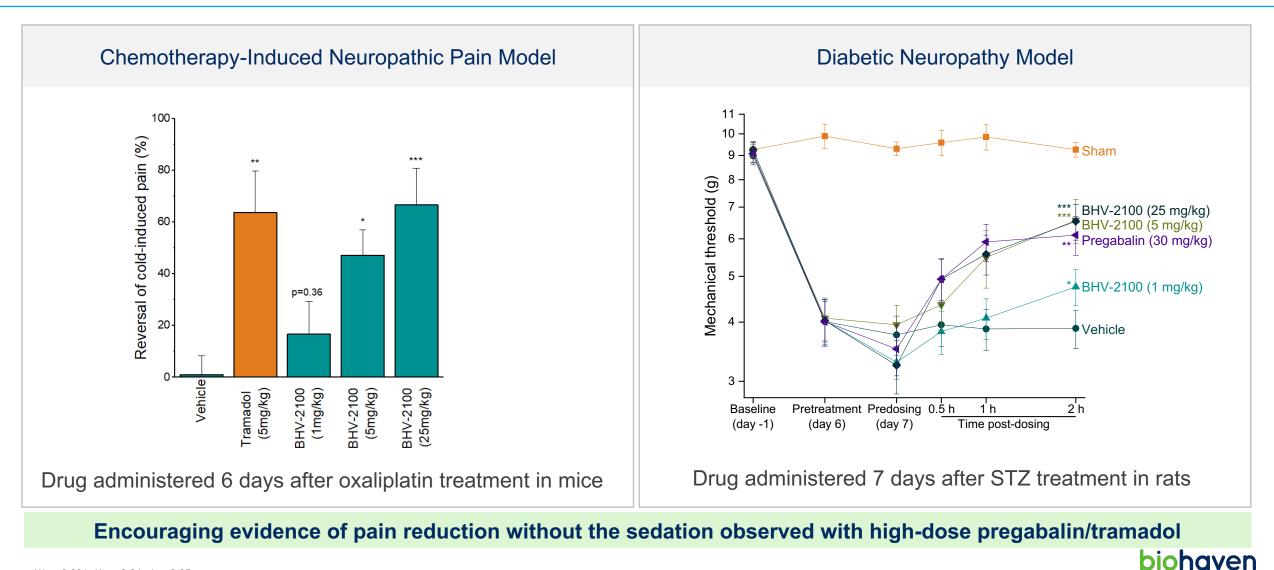

biohaven

1. Vriens et al, 2011; 2. Vandewauw et al, 2018; 3. Lotsch et al 2020; 4. Vangeel et al 2020; 5 de Sainte Agathe et al, 2020; 6. Dyment et al, 2020; 6. Van Hoeymissen et al 2020; 7. Burglen et al. eLife, 2023

BHV-2100: High Potency, Selectivity, and Optimal ADME and Toxicology Characteristics Predict High Likelihood of Clinical Success

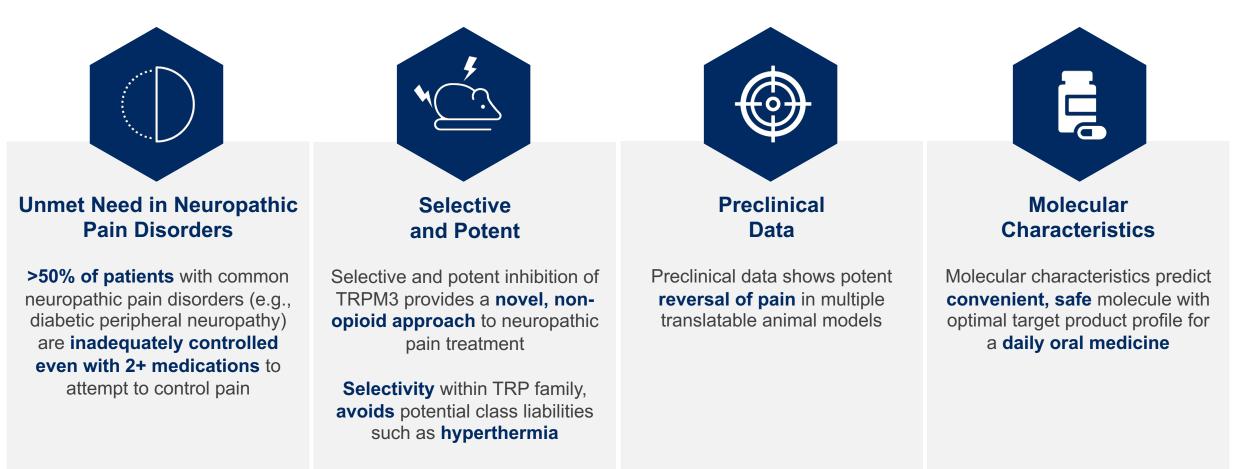
Parameter	Test	Value		
TRPM3 electrophysiology	Patch clamp	8.8 nM IC50		
TRPM3 neuronal activity	hES derived sensory neurons	3 nM IC50		
TRP selectivity	TRPA1/TRPV1/TRPM8	All >10 μM IC50		
CV selectivity	NaV1.5; NaV1.7; CaV1.2; hERG	All >10 μM IC50		
General selectivity	Eurofins	Clean in BioPrint™		
ADME	Clearance across species	Low/moderate		
ADME	Сур Р450	>10 µM all isoforms		
ADME	Bioavailability (mouse, rat, dog)	55-85%		
Toxicology	IND enabling toxicology studies	Strong safety margins, no genotoxicity		

BHV-2100: Potently Reduces Acute Chemogenic Pain and Pain Following Nerve Injury



Encouraging evidence of pain reduction without the sedation observed with high-dose pregabalin

*** p<0.001, ** p<0.01 , * p<0.05


biohaven

BHV-2100: Reverses Established Pain States in Peripheral Neuropathic Pain Models

*** p<0.001, ** p<0.01 , * p<0.05

BHV-2100: A Versatile Agent for Treatment of Multiple Pain Conditions

Investigational New Drug filing planned for 2H 2023

biohaven

PANEL DISCUSSION

Disruptive Potential of Kv7 and TRPM3 Ion Channel Modulation in Epilepsy, Mood Disorders, Pain, and Beyond

PANELISTS

Tessa Romero Equity Research Analyst

J.P.Morgan

Michael Bozik, M.D. President, Ion Channel Research and Development

Steven Dworetzky, Ph.D.

SVP, Kv7 Strategy and Development

John Krystal, M.D.

McNeil Professor and Chair Department of Psychiatry, Yale Michael Rogawski, M.D., Ph.D. Distinguished Professor Department of Neurology and Pharmacology, UC Davis Professor Thomas Voets

Laboratory of Ion Channel Research VIB Center for Brain and Disease Research, KU Leuven Stephen Waxman, M.D., Ph.D. Bridget Flaherty Professor

Department of Neurology, Yale

biohaven DAYS MATTER BIOHAVEN R&D DAY

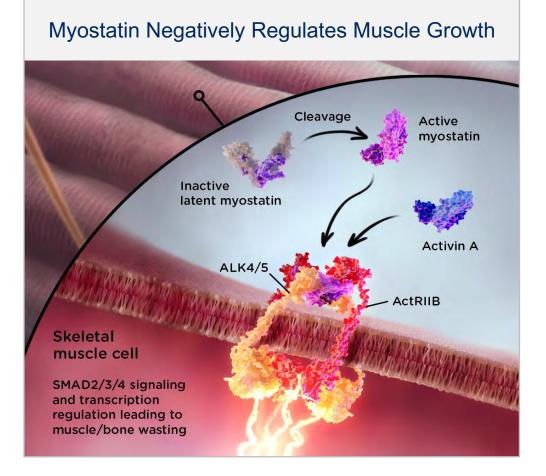
Se-Jin Lee, M.D., Ph.D. Lindsey Lair, M.D., MBA,

Professor

F.A.A.N. VP, Clinical Development Peter Ackerman, M.D. VP, Clinical Development

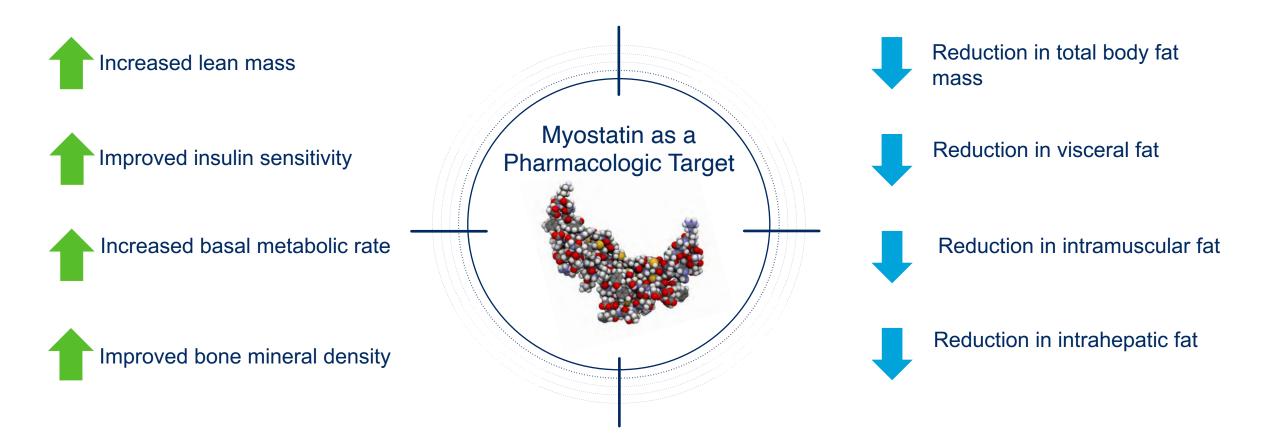
biohaven

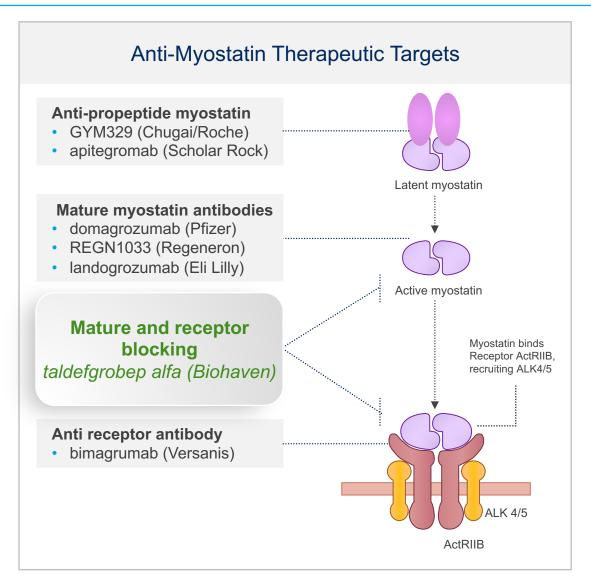
biohaven


Myostatin Inhibition Platform Update

Taldefgrobep Alfa: Novel Myostatin Inhibitor

Myostatin and Activin A are Potent Muscle Regulators

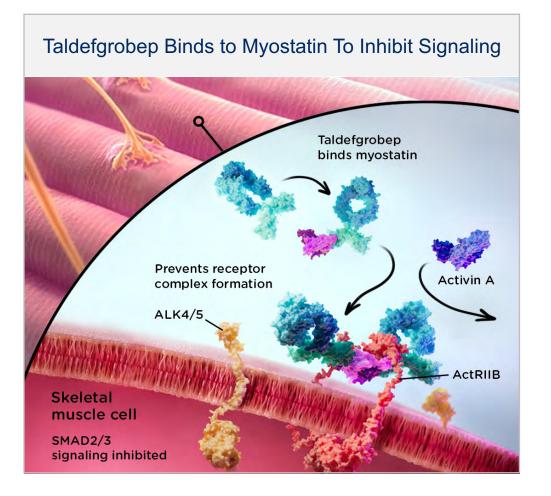

Myostatin (GDF-8) is naturally expressed by skeletal muscle and actively inhibits skeletal muscle growth


Blocking Myostatin and Activin A Leads to Muscle Hypertrophy

- Myostatin is a secreted protein belonging to the TGF-ß superfamily of signaling molecules
- Myostatin signals by binding initially to the activin type 2 receptors, ActRIIA and ActRIIB, which then engages the activin type 1 receptors, ALK4 and ALK5
- Genetic and pharmacological studies in multiple species, including humans, have shown that myostatin normally acts to block skeletal muscle growth
- The function of myostatin in muscle is partially redundant with that of the related protein activin A

Inhibiting Myostatin Signaling Demonstrates Important Physical and Metabolic Change

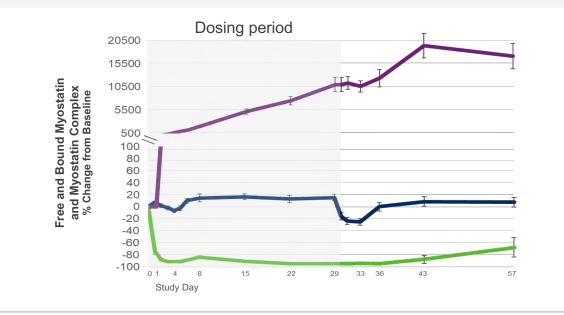
Current Therapeutic Approaches

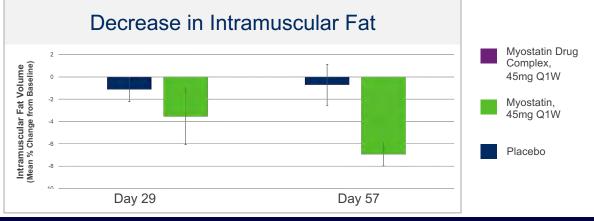


Advantages of a Differentiated MOA

- Nearly all anti-myostatin trials showed increases in muscle and lean body mass
 - Effects were in range of 3-5% with agents specific for MSTN/GDF-11
 - Effects were in range of 5-9% with agents capable of targeting MSTN/GDF-11 and other ligands (activin A)
- Most of the trials failed to show evidence of functional benefits:
 - Muscular dystrophy
 - Sporadic inclusion body myositis
 - Cachexia (Cancer, COPD, end-stage renal disease)
 - Exception:
 - Two trials in aged patients (sarcopenia, falls)
 - SMA (Scholar Rock)
 - Nearly all of these trials showed reduction in body fat and/or improvements in glucose metabolism

Taldefgrobep Alfa: Differentiated Mechanism of Action


Only agent that reduces free myostatin and blocks receptor signaling



- Taldefgrobep is a fusion protein designed to have optimal affinity for myostatin and not other members of TGF-ß pathway
- Non-clinical studies show that taldefgrobep binds to myostatin at activin Type 1 receptor (ALK4/5) binding site and can inhibit signaling
- The complex taldefgrobep forms with myostatin inhibits both myostatin and activin A signaling in tissue where myostatin is active
- Potential for less off-target blockage of activin Type 2 receptor in non-muscular tissue

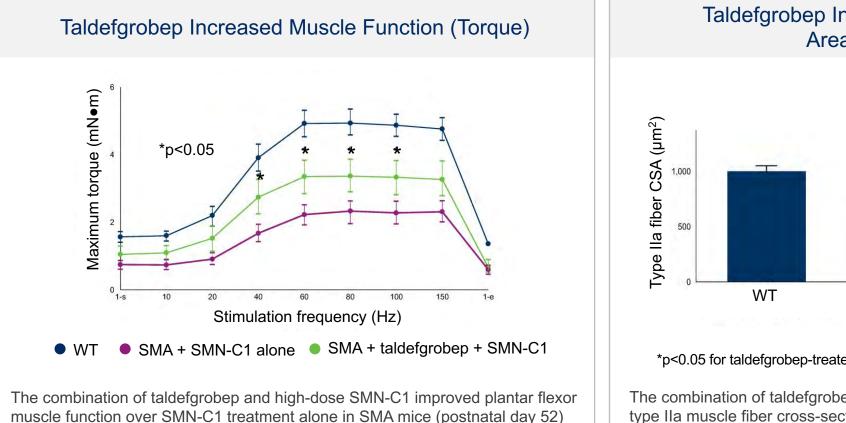
Taldefgrobep Alfa: Activity Confirmed in Human Studies

Myostatin Free and Drug Bound Levels

- Healthy volunteers showed dose dependent increases in exposure and lowering of free myostatin when administered subcutaneously on a weekly basis for 4 weeks
- Accumulation of the taldefgrobep/myostatin complex drives competitive inhibition of free myostatin and activin A binding
- Participants demonstrated an increase in lean skeletal tissue (MRI) and increase in lean body mass along with a reduction of intramuscular fat volume (DXA)

31 MAY 2023

Myostatin: Strong Scientific Rationale in Spinal Muscular Atrophy


COMBINATION THERAPY STUDIES OF SMN UPREGULATION IN SMA DISEASE MOUSE MODEL DEMONSTRATED:

- ✓ Improved life span and strength, along with improved muscle function
- Increased nerve branching, size of post-synaptic area, innervated neuromuscular junctions, enlarged sensory neurons in DRG

- SMA is a neurodegenerative disease; patients retain intact muscle as a target for improvements of function
- Disease modifying therapies approved and widely accessible and effective in SMA patients
- Disease area has well established validated clinical endpoints with proven regulatory path for approval

Taldefgrobep in Combination with SMN Upregulation Demonstrated Improvements in SMA Disease Mouse Model

- SMNΔ7 mice were used as a model for SMA
- Taldefgrobep was given in combination with SMN-C1, an SMN upregulator, in 2 different preclinical studies

Taldefgrobep Increased the Cross-Sectional Area of Muscle Fibers * SMA + SMA + taldefgrobep SMN-C1 alone + SMN-C1 *p<0.05 for taldefgrobep-treated SMA mice vs SMA mice treated with SMN-C1 alone.

The combination of taldefgrobep and low-dose SMN-C1 increased the mean type IIa muscle fiber cross-sectional area in SMA mice (postnatal day 48)

MYOSTATIN IS A VIABLE TARGET OF THE TGF-β PATHWAY TO INFLUENCE NEUROMUSCULAR AND METABOLIC DISEASES

> Area challenged by numerous failed translational clinical studies

Taldefgrobep Has a Differentiated MOA From Other Myostatin Inhibitors

- Taldefgrobep is a biologic capable of binding and neutralizing myostatin activity
- The taldefgrobep-myostatin complex can also act as a receptor antagonist
- By blocking receptors, taldefgrobep antagonizes both myostatin and activin A signaling
- Activity of myostatin/activin A signaling inhibition is specific to tissue where myostatin is normally active

Targeting myostatin and activin A signaling is an attractive target for neurodegenerative and metabolic diseases

VP, Clinical Development

biohaven

Spinal Muscular Atrophy (SMA)

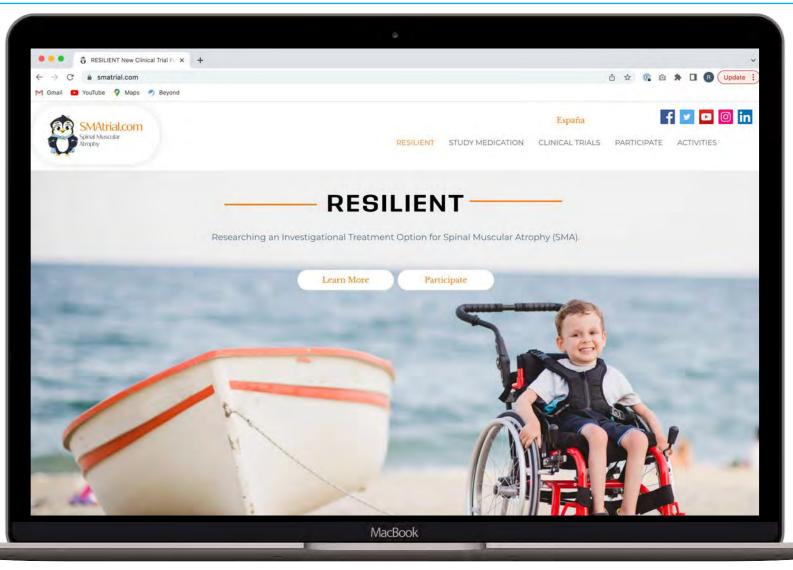
Myostatin Platform TALDEFGROBEP ALFA BHV-2000

Non-Clinical

- Well characterized in over 20 animal studies for safety and models of disease
- Includes juvenile animals permitting the safety down to 2 years of age

Clinical

- In prior studies, 359 participants received taldefgrobep: 179 healthy participants and 180 participants with Duchenne Muscular Dystrophy 5-12 years old
- Administration by subcutaneous injections in the arm, thigh, and abdomen
- Demonstrated dose-dependent suppression of free serum myostatin
- MRI and DXA data was consistent with a positive beneficial effect on muscle health
- Generally safe and well-tolerated

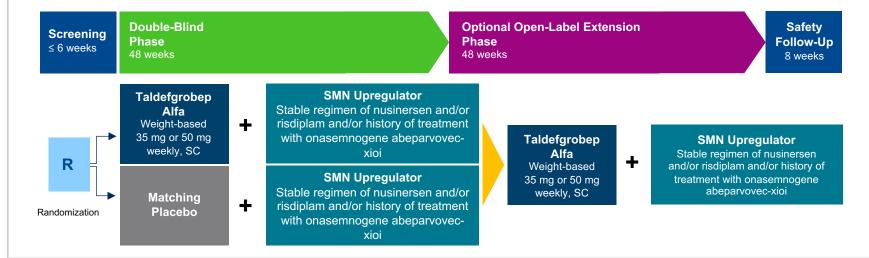

Taldefgrobep Alfa is Well Positioned for Development in SMA

- Taldefgrobep is a novel myostatin antagonist that is being developed as a therapeutic to increase muscle mass and strength
- Taldefgrobep was well characterized in numerous pre-clinical and clinical studies to support development
- SMA is an inherited neuromuscular disease characterized by muscle atrophy
 - Primary symptom is severe muscle weakness
 - Medications recently approved for treatment of SMA target the Survival Motor Neuron 1 (SMN1) gene and SMN2 transcript and may help to preserve motor neurons
 - However, SMA remains a progressive and debilitating condition

No treatment that specifically targets muscle weakness is currently available

The high unmet need for treatments for SMA, together with the available preclinical and clinical data with taldefgrobep, provide a compelling and favorable overall benefit-risk assessment for the development of taldefgrobep as a treatment for SMA

Introducing **RESILIENT**


We named the study **RESILIENT** because we are in absolute awe of the resilience, perseverance, and never-give-up attitude of children and adults with SMA, as well as their parents, guardians, and caregivers.

Phase 3 **RESILIENT** Study Overview

RESILIENT Phase 3 Study Design

48-Week, Double-Blind, Placebo-Controlled Study in Pediatric and Adult Participants With Spinal Muscular Atrophy

- Estimated enrollment: 180 participants
- 2:1 randomization: taldefgrobep alfa vs placebo

PRIMARY OBJECTIVE

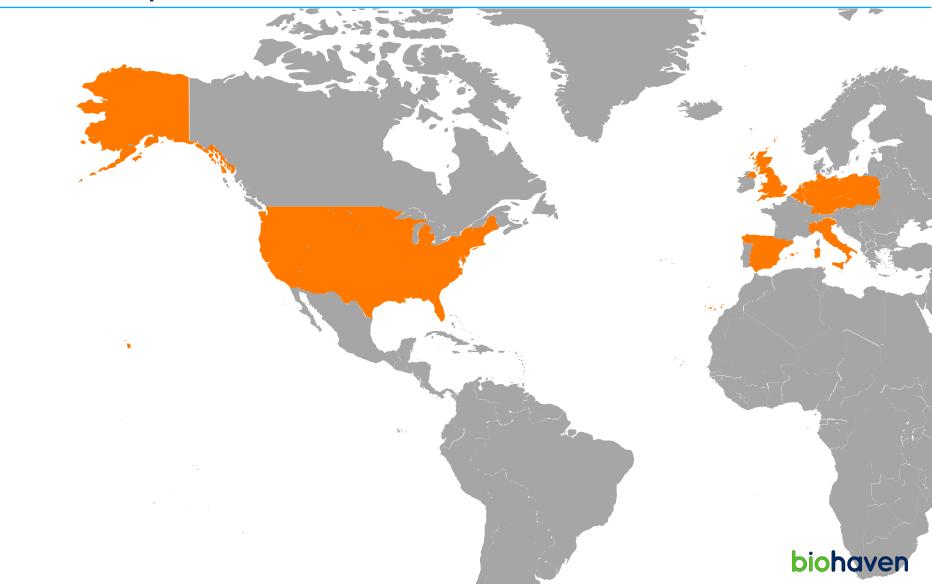
Change in the 32 item Motor Function Measure (MFM-32) total score between Baseline and Week 48 **RESILIENT** is a randomized, placebo-controlled trial testing the effectiveness and safety of taldefgrobep as an adjunctive treatment

Taldefgrobep, or a placebo, will be given while the participant is:

- Already taking a stable dose of nusinersen and/or
- Already taking a stable dose of risdiplam and/or
- Have a history of onasemnogene abeparvovec-xioi

RESILIENT Study Population

- We include a broad population given high unmet need across SMA population, and changing treatment paradigms
- Field has evolved with disease modifying therapies and widespread newborn screening, early treatment, and potentially combinations of therapies
- Shift to focus more on functional status rather than SMA Type; treated patients are achieving milestones they would not have otherwise
- Approximately 180 participants with SMA are expected to enter the treatment phase


RESILIENT is not restricted nor limited to patients based on ambulatory status, background therapy, or classification of SMA

RESILIENT Anticipated Completion of Enrollment 2H 2023

STUDY IS RECRUITING PARTICIPANTS FROM

- Belgium
- Czech Republic
- Germany
- Italy
- Netherlands
- Poland
- Spain
- UK
- United States

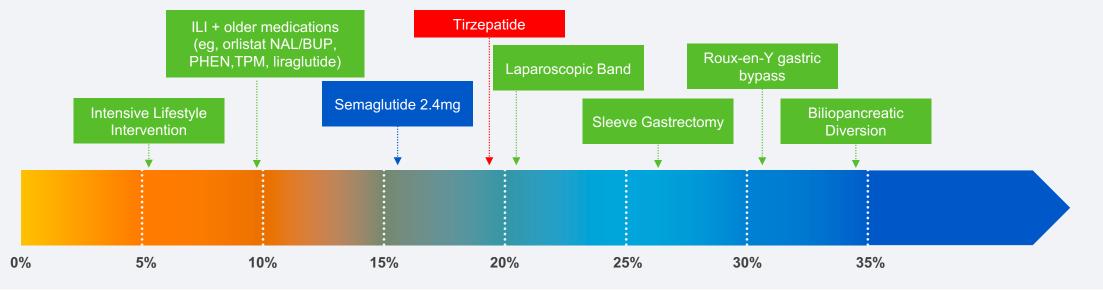


biohaven

Treatment of Adults Living with Overweight and Obesity

Obesity is a Public Health Crisis

- Obesity is a DISEASE of excess and/or abnormal adipose tissue
 - Cardio-metabolic risk is closely correlated with visceral adiposity
- By 2030, it is estimated that 1 billion people worldwide will be living with obesity, including ~50% of American adults¹
 - Obesity and related comorbid disease costs the US healthcare system ~175 billion USD annually²
 - A small proportion of eligible individuals are currently being treated with anti-obesity medications (AOMs)³
- Treatment of obesity is an area of critical unmet medical need


Complications of Obesity⁴

1, The World Obesity Federation. World Obesity Atlas 2022. https://www.worldobesity.org/resource-library/world-obesity-atlas-2022; Accessed 17-NOV-2022. 2, CDC. Adult obesity facts. https://www.gov/obesity/data/adult.html; Accessed 13-NOV-2022. 3. Saxon DR, et. al., Antiobesity medication use in 2.2 million adults across eight large health care organizations: 2009-2015. dPrimeau V, Coderre L, Karelis AD, Brochu M, Lavoie ME, Messier V, Sladek R, Rabasa-Lhoret R. Characterizing the profile of obese patients who are metabolically healthy. Int J Obes (Lond). 2011 Jul;35(7):971-81. doi: 10.1038/ijo.2010.216. Epub 2010 Oct 26. PMID: 20975726.

biohaven

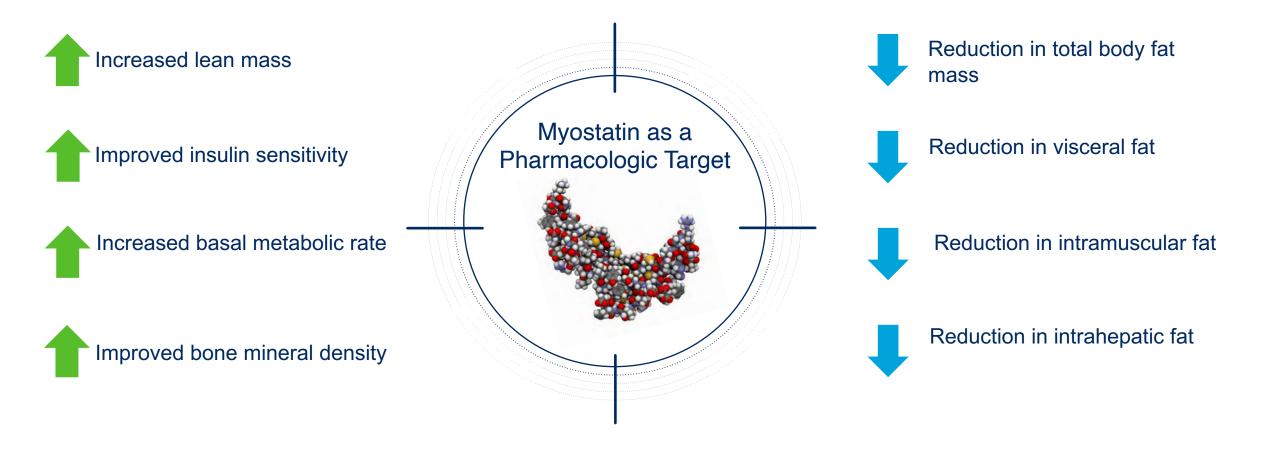
Entering a New Era of Hope and Opportunity for Adults Living with Obesity

- This is a time of rapid change and renewed excitement in the weight management space
- Highly potent anti-obesity medications (AOMs) and combination therapies are approaching efficacy outcomes comparable to bariatric surgery
- Competition in the weight loss space is intensifying but opportunities for disruption exist

Total body weight reduction by most common intervention

Comparative Efficacy Outcomes in Adults Living with Overweight and Obesity

Drug	Dosing	Δ Total Body Weight	Δ Total Fat Mass	Δ Lean Body Mass	Δ A1C
Phentermine/ topiramate n=1,469	PO once daily	-7.8% to -9.8%	NA	NA	-0.4%
Naltrexone/ bupropion n=1,161	1-2 PO twice daily	-5.4%	-11.7%	NA	-0.6%
Bimagrumab n=37	IV Q4W	-6.5%	-20.5%	+3.6%	-0.76%
Semaglutide 2.4 n=1,306	SC QW	-14.9%	-19.3%	-9.7%	-1.6%
Tirzepatide n=1,896	SC QW	-20.9%	-33.9%	-10.9%	-2.3%
Sleeve Gastrectomy n=85	NA	-26.4%	-40.3%	-16.5% to -19.5%	-2.67%


- In the clinic, anti-myostatin therapies have repeatedly demonstrated the ability to increase lean mass, reduce fat mass, and improve glucose metabolism across diverse patient populations
- Improvements in body composition are optimized by those agents that can target both myostatin and activin A signaling

Qsymia USPI; Greenway FL, et. al. COR-I. Lancet. 2010(9741):595-605; Contrave USPI (32/650mg); Heymsfield SB, et. al. JAMA. 2021; Wilding JPH, et. al. STEP1. NEJM 2021;384(11):989-1002; Wilding JPH, et. al. STEP 1 Body Composition. J Endocr Soc. 2021;5(1):A16-17; Wegovy USPI (STEP2); Jastreboff AM, et. al. SURMOUNT1. NEJM. 2022;387(3):205-16; Mounjaro USPI (15mg); Sylivirs A. et. al. Obes Rev. 2022;23(7):e13422; Maimoun L. et. al. Surg Obes Relat Dis. 2019;15(11):1965-73; Zhang H-W, et. al. Gastric Bypass in Chinese w/ DM and obesity. Ann Transl Med. 2020;8(6):372-82; The Phase 2 bimagrumab study was conducted in adults living with overweight or obesity but no history and Type-2 DM, while the Phase 3 phentermine/topiramate, naltrexone/bupropion, semaglutide, and tirzepatide studies were conducted in adults with overweight/obesity, here analysis varies by asset, phentermine/topiramate (1 year). Notably, change in HbA1c data have been standardized (all represented (1 mg) studies, conducted in non-diabetic adults with overweight/obesity, the mean change in HbA1c was -0.52 and -0.52%, respectively; Represents cumulative mean change in adults grant and related signaling pathways for the treatment of muscle atorphy in motor neuron diseases. Cell Mol Life Sci. 2022;79(7):374; Lee S-J. Targeting the myostatin signaling pathway to treat muscle loss and metabolic dysfunction. J Clin Invest. 2021;13(9):e148372

AM, morning; BP, blood pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein; NA, not available; PO, oral; QW, once weekly; TC, total cholesterol; TG, total glucose.

biohaven

Inhibiting Myostatin Signaling Demonstrates Important Physical and Metabolic Change

- Clinically, taldefgrobep has been generally safe and well-tolerated with low rates of GI and musculoskeletal complaints
- In healthy adults, taldefgrobep generated significant improvements in body composition relative to placebo

NOVEL MECHANISM TARGETING BODY COMPOSITION

Potential for combination with GLP-1 class

- Leveraging available pre-clinical and early clinical data allows for significant acceleration of development timelines
- Interaction with FDA planned
- Proof-of-concept trial in adults living with overweight and obesity

Myostatin Platform TALDEFGROBEP ALFA BHV-2000

Novel Mechanism of Blocking Myostatin and Activin A Signaling

- Human data showing potent reduction in free myostatin and accumulation of myostatin-taldefgrobep complex
- Short duration clinical studies demonstrated improvement in lean body
 mass and loss of adipose tissue

Advanced Development Program

- Large preclinical and clinical safety package licensed from BMS
- Existing database includes pediatric and adult clinical data
- Generally safe and well tolerated in multiple clinical studies

Spinal Muscular Atrophy (SMA)

- Single Pivotal Study launched in mid-2022
- Orphan and Fast-Track Designation Obtained in the US
- Global Study with Enrollment Targeted for Completion in 2023

Development Opportunities

- Attractive opportunity for metabolic disorders including obesity
- Additional neuromuscular, bone, and metabolic indications being evaluated
 biohaven

PANEL DISCUSSION

Myostatin Platform Discussion Panel

PANELISTS

MODERATOR

Charles Duncan *Equity Research Analyst*

Peter Ackerman, M.D.
VP, Clinical Development
Lindsey Lair, M.D., MBA, F.A.A.N.
VP, Clinical Development
Se-Jin Lee, M.D., Ph.D.
Professor
Donna H. Ryan, M.D.
Professor Emerita,
Pennington Biomedical Research Center

biohaven

TYK2/JAK1 Platform

TYK2/JAK1 (BHV-8000) Overview

First-in-Class Oral Brain-Penetrant TYK2/JAK1 Inhibitor

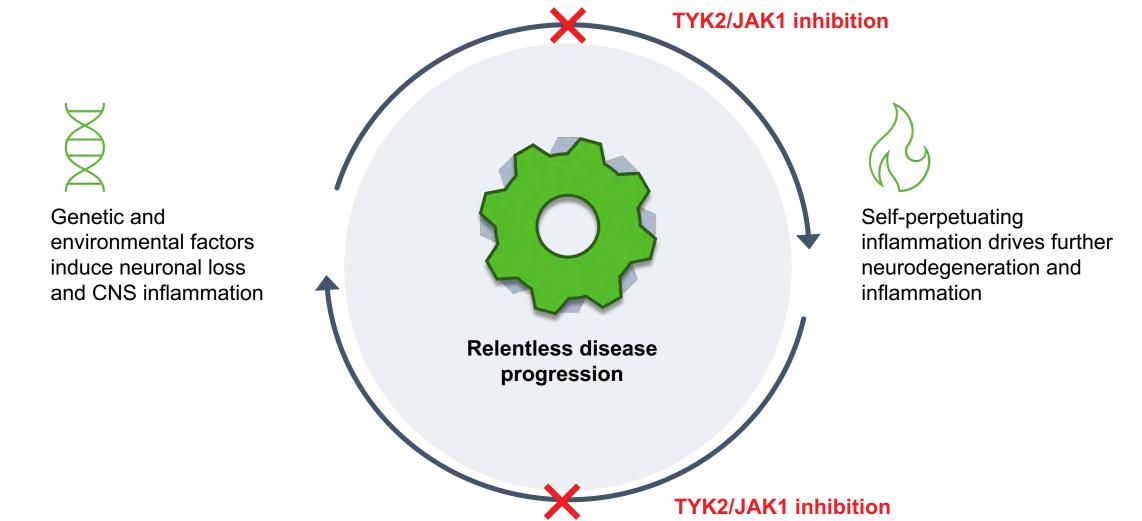
BHV-8000 is a uniquely potent, TYK2/JAK1 selective, brain penetrant inhibitor

Breaks the Cycle of Neuroinflammation

Reduces inflammatory impacts of microglia, astrocytes, and infiltrating T-lymphocytes

Potential in Multiple Neuroinflammatory Disorders

Strong evidence supports efficacy in Parkinson's disease, Alzheimer's disease, Multiple Sclerosis and other neuroinflammatory diseases


Favorable PK/PD and Selectivity Profile

Avoids class risks associated with JAK2/3 inhibition

First-in-Human Phase 1 Clinical Trial Initiated

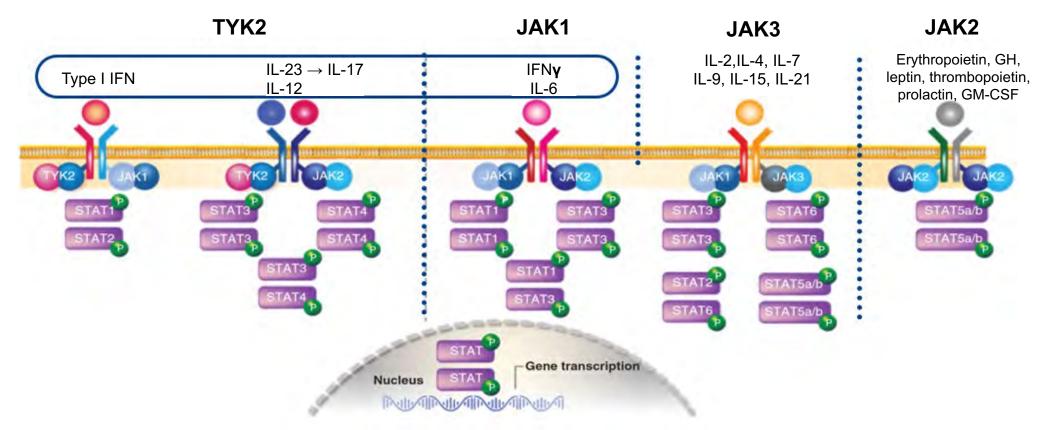
First participants dosed May 2023

Central TYK2/JAK1 Modulation Breaks Inexorable Neuroinflammatory-Neurodegenerative Cycle

Selectivity of BHV-8000 Predicts Improved Safety With Targeted Efficacy

	Pan-JAK inhibitors have side effects and black box warning from the FDA/EMA							
		IC₅₀ in nM						
Inhibitor	Status	JAK1 (autoimmune)	JAK2 (hematology)	JAK3 (leucocyte)	TYK2 (inflammation)	Safety		
Tofacitinib ¹	Approved	15	77	55	489	MACE & cancer risk ↑ Black box warning		
Baricitinib ¹	Approved	4	7	787	61	Black box warning, no MACE		
Upadacitinib ¹	Approved	47	120	2304	4690	Black box warning, no MACE		
Brepocitinib ¹	Phase 2	17	77	6494	23	OCT2 inhibitor (renal tox), ² JAK2		

Selective TYK2 and JAK1 inhibitors do not carry side effects or black box warning from the FDA/EMA						
		IC ₅₀ in nM				
Inhibitor	Status	JAK1 (autoimmune)	JAK2 (hematology)	JAK3 (leucocyte)	TYK2 (inflammation)	Safety
Abrocitinib ¹ (selective JAK1)	Approved	29	803	>15,000	1250	No MACE or cancer risk \uparrow
Deucravacitinib ¹ (selective TYK2)	Approved	>10,000	>10,000	>10,000	0.2	No black box warning
BHV-8000	Phase 1	4	118	>500	4	No off-target effects; No safety issue to date

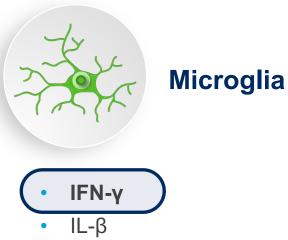

1. Wrobleski et al. J Med Chem. 2019;62(20):8973-8995. 2. Banfield et al. J Clin Pharm. 2018;58:434.

EMA, European Medicines Agency; FDA, US Food and Drug Administration; IC₅₀, half maximal inhibitory concentration; JAK, Janus kinase; MACE, major adverse cardiac event; OCT2, organic cation transporter-2, TYK, tyrosine kinase

biohaven

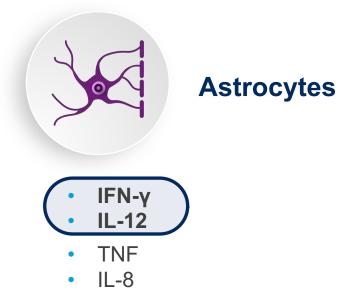
BHV-8000: TYK2/JAK1 in Neuroinflammatory Disease

- Dual inhibition of TYK2 and JAK1 can effectively block Th17 cell generation, Type I IFN signaling, and inflammation
- JAK inhibitors are more efficacious anti-inflammatory agents than anti-TNFs

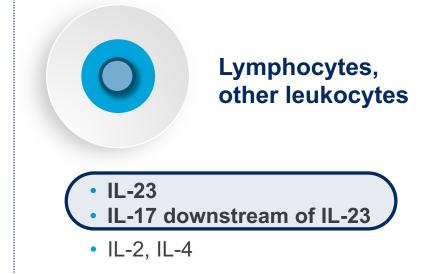


Adapted from Gonciarz et al. Immunotherapy 2021;13(13):1135-1150.

GH, growth hormone; GM-CSF, granulocyte macrophage colony stimulating factor; IFN, interferon; IL, interleukin; JAK, Janus kinase; STAT, signal transducer and activator of transcription proteins; Th, T helper cell; TNF, tumor necrosis factor; TYK, tyrosine kinase



Cellular Drivers in Neuroinflammation: Predominant TYK2/JAK1 Effects

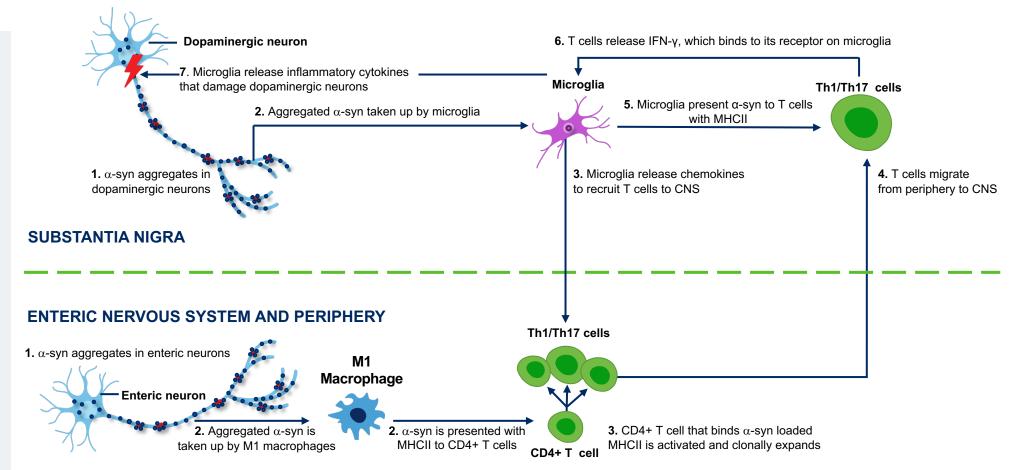


- TNF downstream of IFN-γ
- IL-8
- GM-CSF, MCP-1

Microglia are the resident macrophages of the CNS, playing an important role in neuroinflammation, repair and maintenance

Abnormal astrocytic activity may exacerbate inflammatory reactions and contribute to tissue damage

Strong evidence for Th17 lymphocyte involvement as a driver of neurodegeneration

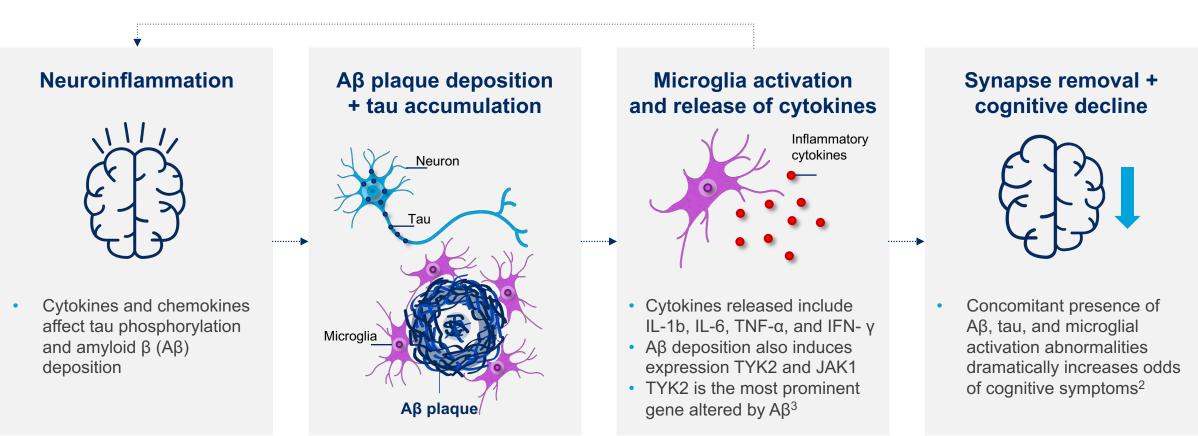

These cells are key players that drive immune dysfunction in neurodegeneration

biohaven

BHV-8000: Targets Both Axes of Neuroinflammation in Parkinson's Disease

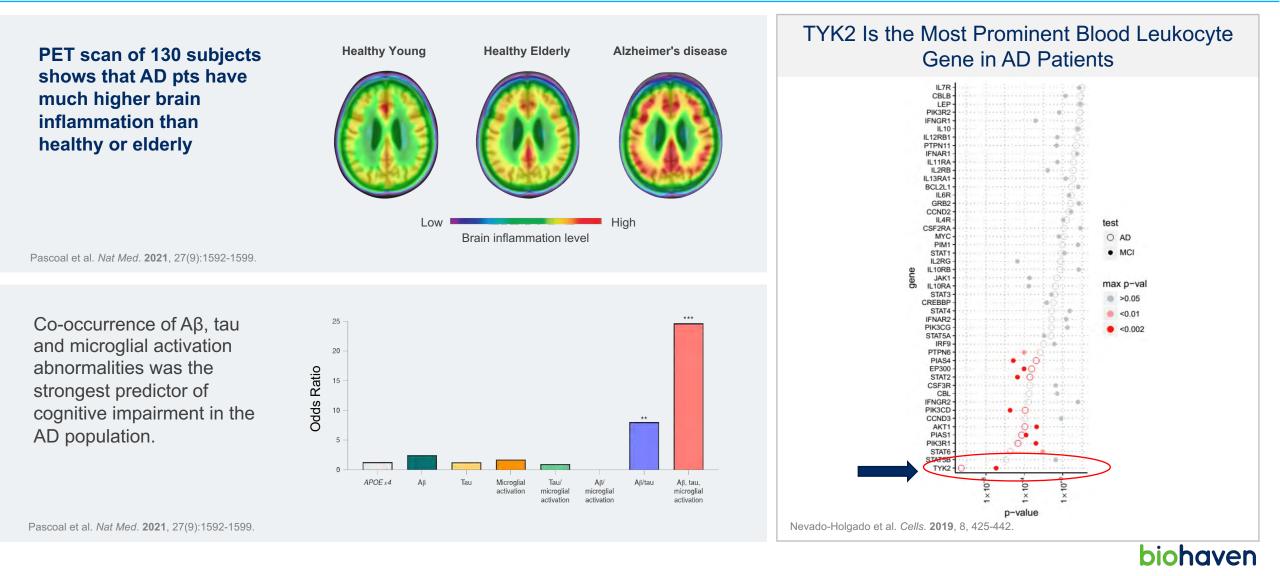
TYK2/JAK2 INHIBITION OF PARKINSON'S NEUROINFLAMMATORY CASCADE

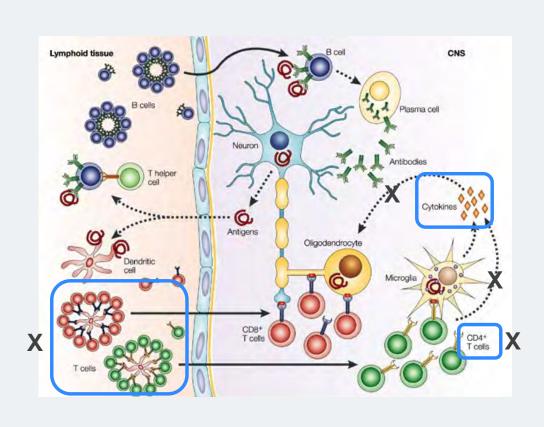
TYK2/JAK1 inhibitors reduce Th17 cell activation and expansion by inhibiting IL-23 signaling and reduce microglial activation by inhibiting IFN- γ signaling triggered by pathogenic α -synuclein aggregates^{1,2}


1. Allen Reish, Standaert. J Parkinsons Dis. 2015;5(1):1-19. 2. Fu et al. J Neuroinflammation. 2022;19(1):98.

α-syn, alpha-synuclein; CD4, cluster of differentiation 4; CNS, central nervous system; IFN-γ, interferon-gamma; IL, interleukin; JAK, Janus kinase; M1, classically activated; MHC, major histocompatibility complex; Th, T helper cell; biohaven TYK, tyrosine kinase

TYK2/JAK1 Inhibition Reduces Several Key Cytokines Driving Alzheimer's Disease (AD) Pathology


Neuroinflammation is a key event in AD pathogenesis, suggesting that a combination of anti-amyloid β (A β)/tau and anti-inflammation therapies is necessary^{1,2}


Adapted from Neher. Immunity. 2022;55(5):821-823.

1. Domingues et al. Curr Alzheimer Res. 2017;14(8):870-882. 2. Pascoal et al. Nat Med. 2021;27(9):1592-1599. 3. Nevado-l et al. Cells. 2019;8:825.

Microglial Activation and Tau Propagation Lead to a Cycle of Neurodegeneration and Neuroinflammation in AD

TYK2/JAK1 Inflammatory Pathways in Multiple Sclerosis

- Multiple sclerosis is an inflammatory disease in which humoral immune and cell-mediated immune responses target CNS antigens
- IL-17A-defective mice are highly resistant to induction of EAE
- PKM2 activators mediate potent inhibitory effects in EAE model due to Th17 cell effects
- In a meta-analyses of literature, TNF- α , IL-15, IL-12, IL-23/IL-17, and IFN γ were elevated in or predictors of MS patients vs. controls
- Secukinemab (IL-17A) demonstrates an effect in relapsing remitting MS
- Brain penetrant TYK2/JAK1 kinase inhibitors reduce **Th17 cells** (IL-17 and IL-23) and target IL-12 signal transduction
 - BHV-8000 is ideally suited to reducing neuroinflammation in MS

McGinley et al, Immunity 52:342-356, Palle et al, Med Sci, 5:23, 2017; Bai et al, Frontiers in Neuroscience, 10.3389, Oct 4, 2019, Havrdova, Multiple Sclerosis Journal, 18_509, 2012; Figure from Nat Rev Neurosci. 2002 Apr;3(4):291-301. doi: 10.1038/nrn784.

BHV-8000: Summary

Selectivity is a differentiator

- Selective inhibition of TYK2/JAK1 provides potential for best-in-class immunomodulation in neuroinflammatory disorders
- Selectivity for TYK2/JAK1 mitigates non-selective JAK class liabilities, largely related to JAK2 and JAK3 inhibition, and offers potential to improve benefit-risk for the highly selective BHV-8000 dual kinase inhibitor

Potential in multiple neuroinflammatory disorders

- Complements other approaches directly addressing neurodegeneration such as amyloid, α-synuclein, tau, and mitochondrial targeting therapies
- Strong evidence supports potential efficacy in Parkinson's disease, Alzheimer's disease, and further neuroinflammatory diseases

Clinical trials underway and anticipated in 2024

- Phase 1 initiated in May 2023
- Phase 2 in Parkinson's disease anticipated to begin in 2024
- Partner (Highlightll Pharmaceuticals) anticipates initiating a study in Alzheimer's disease in China in 2024

PANEL DISCUSSION

Exploring the Potential of TYK2/JAK1 Inhibition in Neuroinflammation

Tim Lugo Equity Research Analyst

William Blair

PANELISTS

Bruce Car, Ph.D. Chief Scientific Officer Tanya Fischer, M.D., Ph.D. CDO, Head of Translational Medicine Kenneth Marek, M.D.

Distinguished Scientist Institute for Neurodegenerative Disorders

Melissa Beiner, M.D. Director, Research & Development John Tilton Chief Commercial Officer, Rare Disease

Gil L'Italien, Ph.D. SVP, GHEOR & Epidemiology

biohaven

biohaven

biohaven

Glutamate Platform

Glutamate Platform TRORILUZOLE SCA

BREAKING NEWS

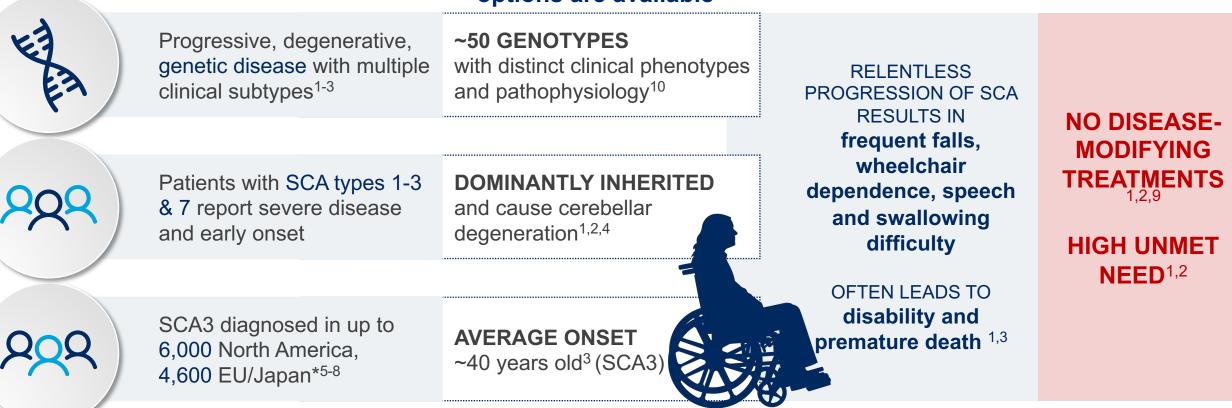
US NDA Submitted 2Q 2023

MAA Submission planned for 2023

SCA

Ultra-rare, genetically-defined, progressive neurodegenerative disease associated with chronic disability, frequent falls, loss of ambulation, speech and swallowing impairment, and premature death

Regulatory Designations


- Orphan Drug Designations in both US and EU
- Fast Track Designation in US

Efficacy and Safety of Troriluzole in SCA3

- The totality of efficacy and safety data from Study BHV4157-206 and BHV4157-201
 3-year open label extension phase demonstrates therapeutic benefit and disease stabilization for troriluzole in SCA3
 - 2 randomized clinical studies in SCA were conducted over 6 years, representing the largest, multicenter, placebo-controlled dataset for SCA (N = 358)
 - Consistent treatment benefits observed in patients with SCA3 in Study BHV4157-206 across multiple outcome measures including the change from baseline f-SARA at Week 48, CGI-I total score at Week 48, and a robust reduction in fall risk over the study period
 - Confirmatory evidence of efficacy provided by data from the 3-year, long-term openlabel extension phase of two studies (BHV4157-206 and BHV4157-201) using a Matching Adjusted Indirect Comparison (MAIC) to an external control group

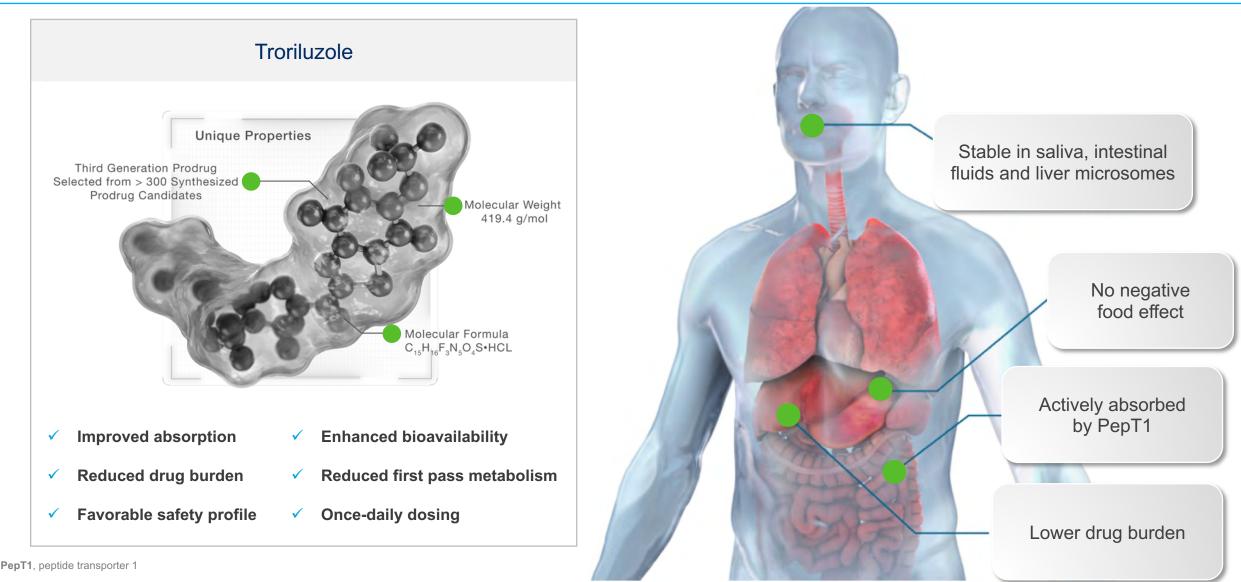
Spinocerebellar Ataxias (SCAs)

Ultra-rare, progressively debilitating neurodegenerative disorders for which no approved treatment options are available¹⁻³

Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia. *Nat Rev Dis Primers*. 2019;5(1):24. 2. Yap KH, Azmin S, Che Hamzah J, Ahmad N, van de Warrenburg B, Mohamed Ibrahim N. Pharmacological and non-pharmacological management of spinocerebellar ataxia: a systematic review. *J Neurol*. 2022;269(5):2315-2337. 3. Diallo A, Jacobi H, Tezenas du Montcel S, Klockgether T. Natural history of most common spinocerebellar ataxia: a systematic review and meta-analysis. *J Neurol*. 2021;268(8):2749-2756. 4. Matilla-Dueñas A, Ashizawa T, Brice A, et al. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. *Cerebellum*. 2014;13(2):269-302. 5. Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. *Neuroepidemiology*. 2014;42(3):174-83. 6. Ashizawa T, Figueroa KP, et al. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. *Orphanet J Rare Dis*. 2013 Nov 13;8:177. 7. U.S. and World Population Clock. United States Census Bureau. Accessed September 17, 2022. https://www.census.gov/popclock 8. EUROSTAT. Accessed May 22, 2023 https://exeuropa.eu/eurostat/ 9. Brooker SM, Edamakanti CR, Akasha SM, Kuo SH, Opal P. Spinocerebellar ataxia clinical trials: opportunities and challenges. *Ann Clin Transl Neurol*. 2021;8(7):1543-1556. 10. Müller U. Spinocerebellar ataxias (SCAs) caused by common mutations. *Neurogenetics*. 2021 Oct;22(4):235-250. * EU refers to EU4, UK and select other countries

Falls Directly Due to Gait Abnormalities Occur Commonly in SCA

	CONSEQUENCES OF FALLING	MOST PATIENTS REPORTED		
Z	Injuries in 75% of patients	Fear of falling	Trying to prevent falls	
	Fractures in ~20% of patients	Restriction of activities	Troubled by near-falls	



EUROSCA is a cross-European registry of SCA patients

- More SCA3 patients experienced falls vs other SCA genotypes*
- Frequent fallers reported more injurious falls and less balance confidence
 - They also used a walking aid or walking support more often than
 non-frequent fallers
- Frequent fallers were less often able to go outdoors alone
- Over 60% of patients fear falling, limiting quality of life

*Data based on univariate regression analysis or descriptive statistics. Fonteyn et al. *Cerebellum.* 2010;9(2):232-239.

Troriluzole: Rational Drug Discovery to Optimize Therapy

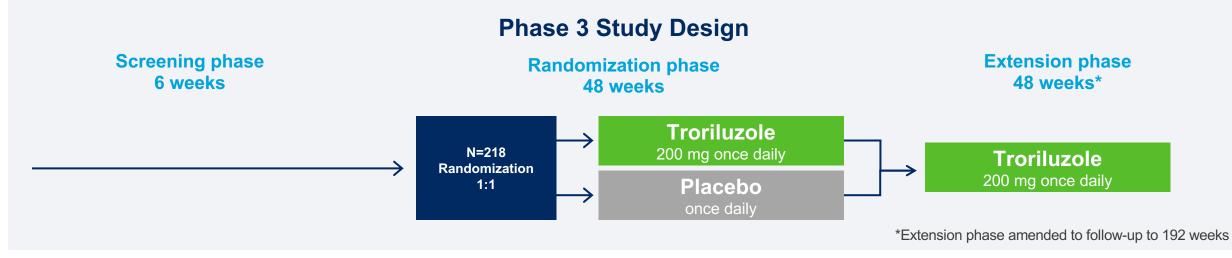
BHV4157-206: Design of Troriluzole in SCA Phase 3 Study

48-week, double-blind, placebo-controlled study in adult participants with spinocerebellar ataxia

Population

- 18-75 years of age
- Diagnosis of SCA confirmed by genetic testing (SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, and SCA10)
- Ambulatory
- Stratified by SCA genotype

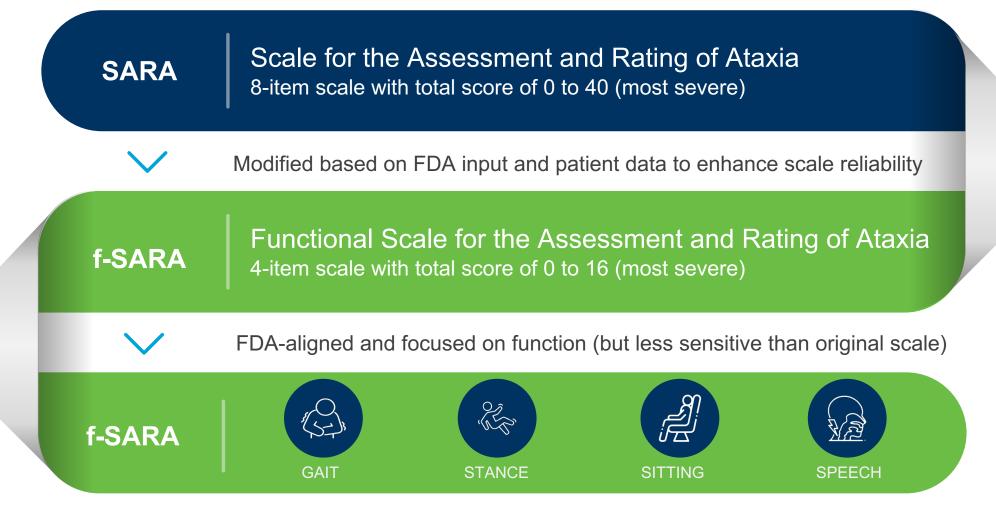
Primary outcome: Modified SARA scale (f-SARA)


FDA-aligned outcome measure

Secondary outcomes

- Safety as measured by frequency of TEAEs
- PIFAS
- FARS-ADL
- FARS-FUNC

Exploratory outcomes

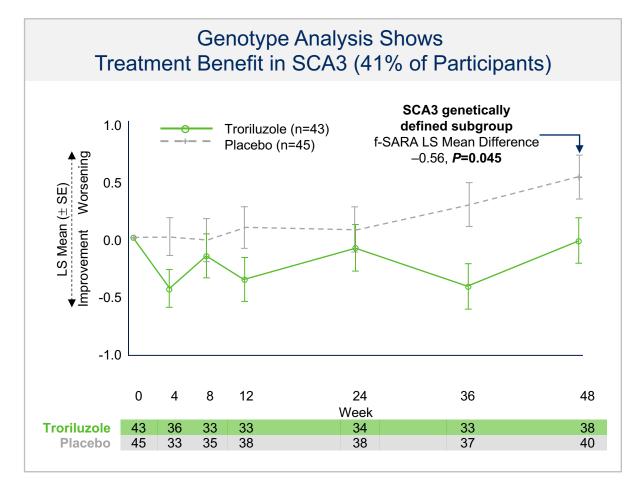

- CGI-I
- PGI-C
- Neuro-QOL Lower Extremity Scale
- Neuro-QOL Upper Extremity Scale
- Neuro-QOL Fatigue Scale

CGI-I, Clinical Global Impression-Global Improvement Scale; FARS-ADL, Activities of Daily Living Scale from the Friedreich Ataxia Rating Scale; FARS-FUNC, Functional Staging for Ataxia Scale from the Friedreich Ataxia Rating Scale; FARS-FUNC, Functional Scale for the Assessment and Rating of Ataxia; Neuro-QOL, Neurology Quality of Life; PGI-C, Patient Global Impression Change Scale; PIFAS, Patient Impression of Function and Activities of Daily Living Scale; SARA, Scale for the Assessment and Rating of Ataxia; SCA, spinocerebellar ataxia; TEAE, treatment-emergent adverse event.

New Primary Endpoint Was Utilized in Phase 3 Trial: **f-SARA** Novel FDA-Aligned Outcome Measure Developed by Biohaven

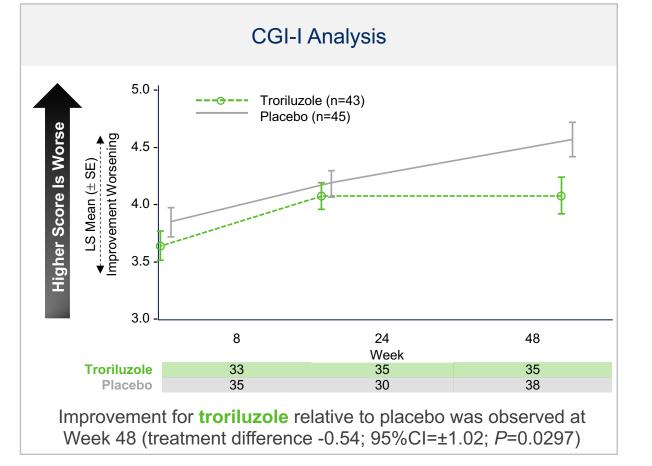
Any change in the f-SARA score is highly clinically meaningful

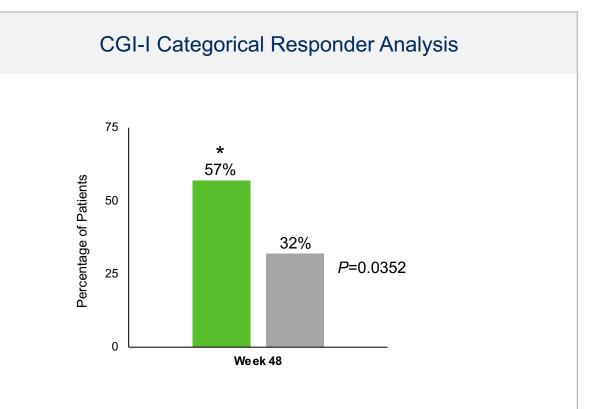
BHV4157-206: Treatment Benefit of Troriluzole Observed vs Placebo in SCA3 Randomization Stratum


Phase 3 Study in SCA Top-line Results

Thindry Outcome (All OOAS)							
	Troriluzole (N=106)	Placebo (N=107)	Difference TRO – PBO				
Baseline f-SARA, All SCAs Mean Score	4.9	4.9					
Week 48 f-SARA, All SCAs Mean Score	5.0	5.1					
Week 48 change from baseline Least Squares Mean (SE)	0.20 (0.19)	0.27 (0.18)	-0.06 (0.20) (<i>P</i> -value 0.75)				

Primary Outcome (All SCAs)

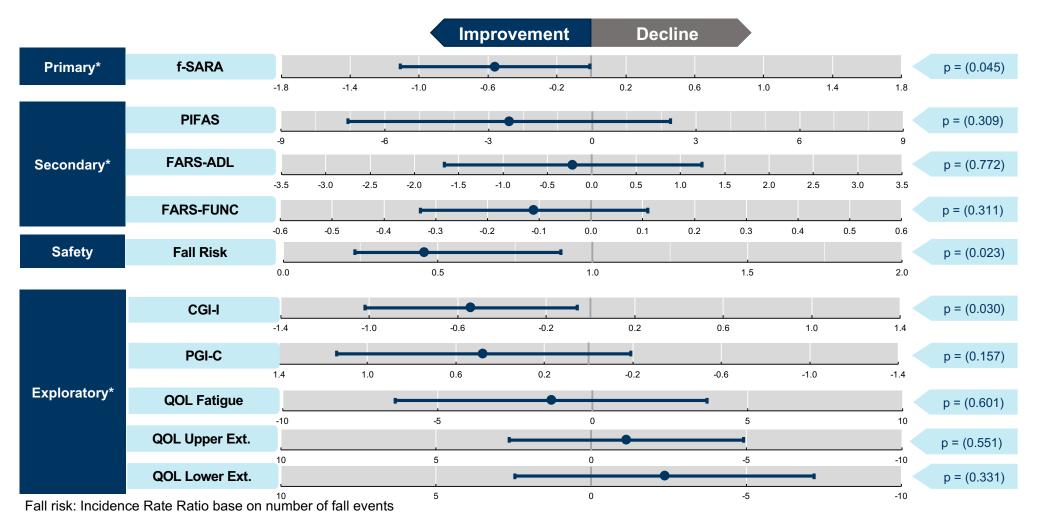

SCA3 genotype demonstrates treatment benefit in the f-SARA, as well as across key secondary and exploratory endpoints, including a clinically relevant risk reduction in falls in the troriluzole arm



Results for the SCA3 group are based on a model with no covariates with fixed effects for treatment, visit, and visit-by-treatment interaction; p-values are descriptive.

BHV4157-206: Treatment Benefit of Troriluzole Observed vs Placebo in SCA3 Participants on Clinical Global Impression of Improvement (CGI-I)

CGI-I requires the clinician to assess how much the patient's illness has improved or worsened relative to the baseline visit

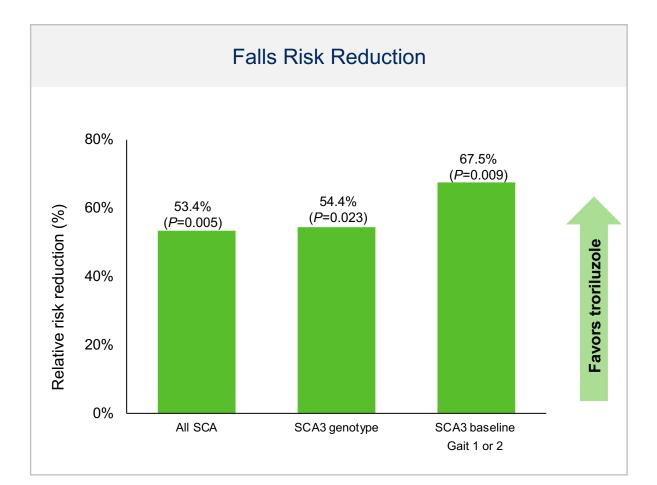


A higher percentage of patients treated with **troriluzole** were stable or improved on the CGI-I categorical responder analysis at Week 48

Results for the SCA3 group are based on a model with no covariates with fixed effects for treatment, visit, and visit-by-treatment interaction; p-values are descriptive CGI 1-4: No change or improved from baseline; CGI 5-7: Worse relative to baseline

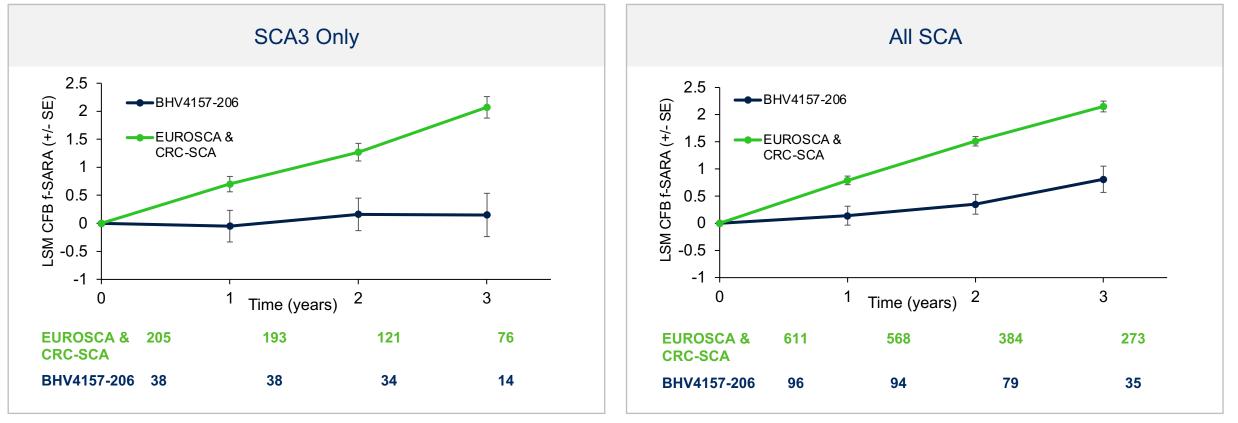
BHV4157-206: Consistent Treatment Benefit of Troriluzole Observed vs Placebo in SCA3 Participants Across Multiple Prespecified Outcome Measures

*Genotype analysis was post hoc as the All SCA study population (SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA 10) was the mITT population for the primary analysis. PGI-C, QOL-UE, and QOL-LE scales reversed on x-axis. Results for the SCA3 group are generally based on a model with no covariates with fixed effects for treatment, visit, and visit-by-treatment interaction; p-values are descriptive.


Biohaven | R&D Day

BHV4157-206: Troriluzole-Treated Participants Showed a Substantial Risk Reduction in Falls in SCA3, as well as All SCA Study Population

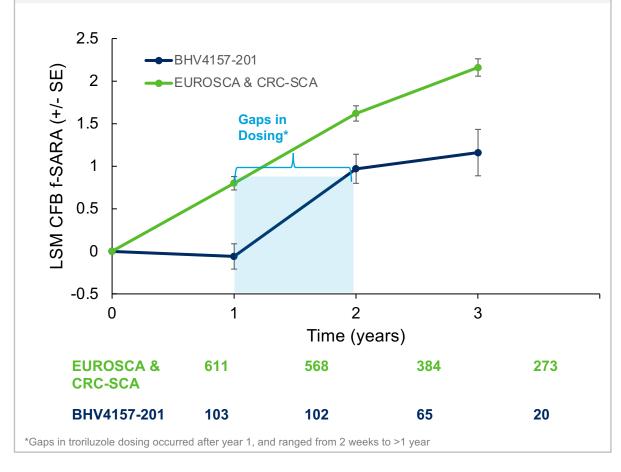
Treatment with troriluzole for 48 weeks reduced the risk of fall events by 53% in subjects in the overall (All SCA) population, by 54% in participants in the SCA3 population, and by 68% in participants with SCA3 who were ambulatory (i.e., baseline Gait 1 or 2).


"The importance of morbidity related to falls in this patient population cannot be overstated." – Jeremy Schmahmann, MD

Professor of Neurology at Harvard Medical School and Founding Director of the Ataxia Center at Massachusetts General Hospital

BHV4157-206: Matching Adjusted Indirect Comparison (MAIC)-Troriluzole Demonstrated Benefit in SCA3, as Well as All SCA, Over 3 Years

- At years 1, 2, and 3, change from baseline in f-SARA scores was significantly better among troriluzole patients vs the matched external control
- Validation metrics from f-SARA confirm that these changes are clinically relevant and meaningful to patients



Combined CRC-SCA and EUROSCA data – P values < 0.018

LSM, least squares mean; CFB, change from baseline; EUROSCA, cross-European registry of SCA patients; CRC-SCA, Clinical Research Consortium for Spinocerebellar Ataxias

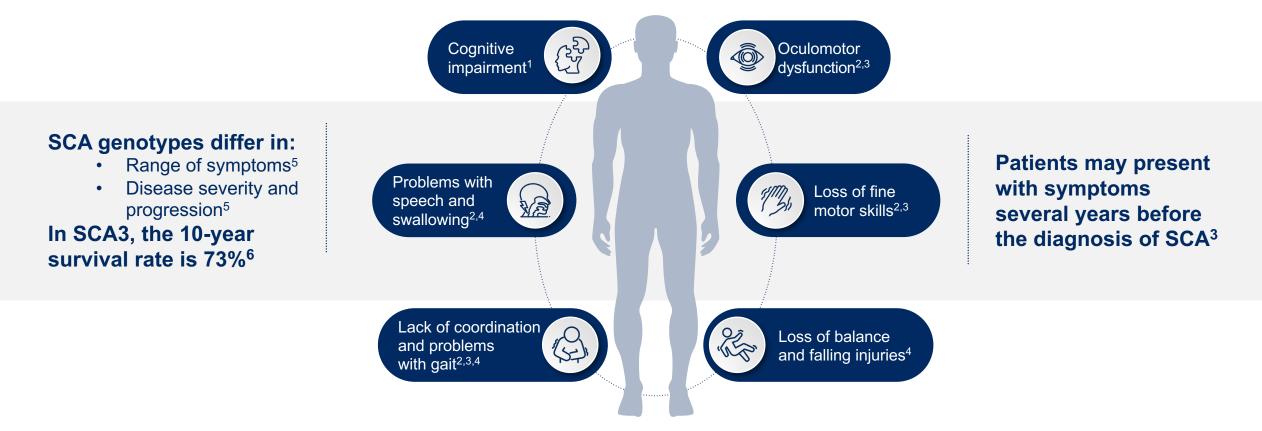
BHV4157-201: Matching Adjusted Indirect Comparison (MAIC)- Troriluzole Demonstrated Benefit in All SCA vs Natural History Cohorts

Progression During Treatment Gap and Stabilization Post-Gap (All SCA)

At year 1, change from baseline in f-SARA scores was significantly reduced among troriluzole-treated patients vs the matched natural history referent (EUROSCA & CRC-SCA), with progression observed during troriluzole treatment gap and stabilization post-treatment gap

Combined CRC-SCA and EUROSCA data – P values ≤0.0007

LSM, least squares mean; CFB, change from baseline; EUROSCA, cross-European registry of SCA patients; CRC-SCA, Clinical Research Consortium for Spinocerebellar Ataxias

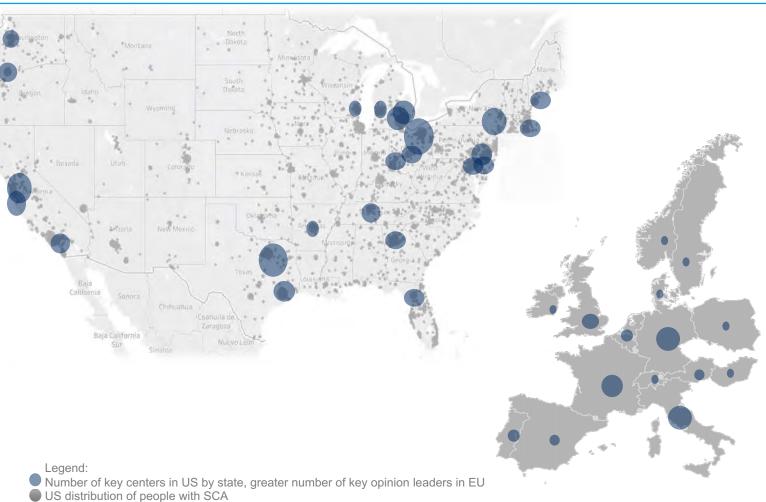


biohaven

Preparing to Serve People Living with SCA3

SCAs Are Characterized by Relentlessly Progressive Cerebellar Degeneration and Premature Death With No Approved Treatment

If approved, troriluzole will be the first and only approved treatment for people living with SCA3


1. Moriarty A, Cook A, Hunt H, Adams ME, Cipolotti L, Giunti P. A longitudinal investigation into cognition and disease progression in spinocerebellar ataxia types 1, 2, 3, 6, and 7. *Orphanet J Rare Dis*. 2016;11(1):82. 2. What is Ataxia? National Ataxia Foundation. Accessed September 17, 2022. www.ataxia.org/what-is-ataxia/#whatlsAtaxia 3. Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia. *Nat Rev Dis Primers*. 2019;6(1):24. 4. Machado-Joseph Disease and the Spinocerebellar Ataxias Fact Sheet. National Institute of Neurological Disorders and Stroke. Updated June 7, 2021. Accessed September 17, 2022. www.inds.nin.gov/machado-joseph-disease-and-spinocerebellar Ataxias Fact Sheet. She Sh, Opal P. Spinocerebellar Ataxia control in the Spinocerebellar ataxia types 1, 2, 3, and 6 (EUROSCA): a longitudinal cohort study. Lancet Neurol. 2018;17(4):327-334.

Biohaven | R&D Day

Centralized Treatment for People Living With SCA Allows for a Targeted and Efficient Rare Disease Commercialization Plans in US and Europe

- SCA3 diagnosed in up to 6,000 North America, 4,600 EU/Japan¹⁻⁴
- Despite geographical distribution of people with SCA, key ataxia/movement disorder centers led by key opinion leaders manage many patients with SCA
- Focused Rare Disease Commercial staff of ~50 in US and ~40 in Europe will drive successful launches

1. Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. *Neuroepidemiology*. 2014;42(3):174-83. 2. Ashizawa T, Figueroa KP, et al. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. *Orphanet J Rare Dis*. 2013 Nov 13;8:177. 8. U.S. and World Population Clock. United States Census Bureau. Accessed September 17, 2022. https://www.census.gov/popclock 9. EUROSTAT. Accessed May 22, 2023 https://ec.europa.eu/eurostat/

Biohaven | R&D Day

Biohaven Continues to Closely Collaborate With the Ataxia Organizations and Will be Ready to Serve Patients Across the Globe

- Collaborations with leading SCA researchers
- Partnerships with advocacy organizations
- Scientific membership in research groups
- Key contribution to the ongoing development of a quality natural history study in SCA

biohaven

MGH

1811

CA Global

SCA3 Summary

Pivotal Phase 3 Completed

Troriluzole demonstrates significant treatment benefit in SCA3 across multiple efficacy and safety endpoints

Safety Database

Large safety database shows safe and well tolerated for up to 6 years

Regulatory

- Orphan Designations in both US and EU
- Fast Track Designation in US
- US NDA Submitted 2Q 2023
- MAA Submission planned for 2023

Market Opportunity and Commercial Readiness

- Ultra-rare, genetically-defined, progressive neurodegenerative disease
- No currently approved treatments
- Partnership with KOLs, centers of excellence and patient advocacy
- Extensive rare disease commercialization experience
- Preparing to serve people living with SCA3 in US/EU upon approvals

PANEL DISCUSSION Glutamate Platform

Charles Duncan Equity Research Analyst

PANELISTS

Tanya Fischer, M.D., Ph.D. *CDO, Head of Translational Medicine* Gil L'Italien, Ph.D. SVP, Gheor & Epidemiology Liana Rosenthal, M.D., Ph.D. *Associate Professor Department of Neurology, Johns Hopkins* John Tilton

Melissa Beiner, M.D.

Director, Research & Development

Chief Commercial Officer, Rare Disease

Anticipated Near-Term Milestones

	INDICATIONS	1H 2023	2H 2023	2024
BHV-7000 Kv7 Channel Activator	Focal Epilepsy	Phase 1 Topline Initiate EEG Study	Initiate Phase 2/3	
	Bipolar Disorder		Initiate Phase 2/3	
BHV-7010 Kv7 Channel Activator	Epilepsy and Mood Disorders		File IND	
BHV-2100 TRPM3	Chronic Pain Disorders		File IND	
BHV-8000 TYK2/JAK1	Neuroinflammatory Disorders	Initiate Phase 1		Initiate Phase 2 - PD
Troriluzole	Spinocerebellar Ataxia Type 3	NDA Submission	MAA Submission	
NCE Prodrug of Riluzole	Obsessive-Compulsive Disorder		Complete Enrollment	
Taldefgrobep alfa	Spinal Muscular Atrophy		Complete Enrollment	
Anti-Myostatin Adnectin	Metabolic Disorders		Initiate Phase 2/3*	
BHV-1300 IgG Degrader	Immune-Mediated Diseases		File IND	
* Planning in progress PD , Parkinson's disease				biohaven

biohaven

THANK YOU!

